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Abstract
In the previous decade, dozens of studies involving thousands of children across several research disciplines have made
use of a combined daylong audio-recorder and automated algorithmic analysis called the LENA� system, which aims
to assess children’s language environment. While the system’s prevalence in the language acquisition domain is steadily
growing, there are only scattered validation efforts on only some of its key characteristics. Here, we assess the LENA�

system’s accuracy across all of its key measures: speaker classification, Child Vocalization Counts (CVC), Conversational
Turn Counts (CTC), and Adult Word Counts (AWC). Our assessment is based on manual annotation of clips that have been
randomly or periodically sampled out of daylong recordings, collected from (a) populations similar to the system’s original
training data (North American English-learning children aged 3-36 months), (b) children learning another dialect of English
(UK), and (c) slightly older children growing up in a different linguistic and socio-cultural setting (Tsimane’ learners in rural
Bolivia). We find reasonably high accuracy in some measures (AWC, CVC), with more problematic levels of performance
in others (CTC, precision of male adults and other children). Statistical analyses do not support the view that performance is
worse for children who are dissimilar from the LENA� original training set. Whether LENA� results are accurate enough
for a given research, educational, or clinical application depends largely on the specifics at hand. We therefore conclude
with a set of recommendations to help researchers make this determination for their goals.
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While nearly all humans eventually become competent
users of their language(s), documenting the experiential
context of early acquisition is crucial for both theoretical
and applied reasons. Regarding theory, there are many open
questions about what kinds of experiences and interactions
are necessary, sufficient, or optimal for supporting language
development. Moreover, the ability to accurately and
quickly assess an infant’s state of development at a given
point in time is of central importance for clinical purposes,
both for children with known risks of language delays and
disorders, and those who might not be identified based
on risk factors. Reliable assessments are also crucial for
measuring intervention efficacy.

One approach that has been making its way into the
mainstream literature across basic and applied research
on language and cognition relies on day-long recordings
gathered with a LENA� audiorecorder (e.g., Gilkerson
et al. 2017; Greenwood et al., 2011; Oller et al. 2010;
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VanDam & De Palma 2018), and further analyzed using
automated, closed-source algorithms. As we summarize
below, this approach has many advantages, which may
explain its expanding popularity. While over a hundred
papers over the past two decades have used the output
automatically provided by LENA�, only a handful include
validity estimates (e.g., d’Apice et al. 2019; Weisleder &
Fernald 2013; Zimmerman et al. 2009), even fewer where
validity estimation was the primary focus of the paper
(e.g., Bulgarelli & Bergelson 2019; Busch et al. 2018;
Canault et al. 2016; Ganek & Eriks-Brophy 2018; Lehet
et al. 2018). As a result, few studies report sufficient
details about validation accuracy for one or more metrics,
limiting the interpretability of the results of a meta-analytic
assessment (cf. Cristia et al. 2020). The work undertaken
thus far also has some limitations, which are described
further in the “Previous Validation” section below. Bearing
these in mind, we endeavored to conduct an evaluation
that is fully independent of the LENA� algorithms’
automated assessment, permitting a systematic, extensive,
and independent evaluation of its key metrics, in a large
sample of diverse infants, including (a) a sample of children
similar to the LENA� training set (i.e., infants and toddlers,
growing up in North American English-speaking homes,
and aged 3 to 36 months), (b) a group of similarly aged
children learning a different dialect (UK English); and (c)
slightly older children learning a different language in a very
different socio-cultural setting (Tsimane’-learning children
in rural Bolivia).

Brief introduction to LENA� products The LENA� system
consists of hardware and software. The hardware com-
ponent is a lightweight, sturdy, and easy-to-use recording
device worn by a child in specialized clothing. The soft-
ware is a suite of proprietary computer programs designed
to provide automated quantitative analyses of the children’s
auditory environment and their own vocalizations. The lat-
ter was developed over an extensive corpus of full day
audio recordings gathered using their patented recording

hardware (Xu et al. 2009). The original dataset included
over 65,000 hours of recording across over 300 Ameri-
can English-speaking families chosen for diversity in child
age (1–42 months) and socio-economic status (Gilkerson &
Richards, 2008a). Half-hour selections from 309 recordings
were transcribed and annotated for the purpose of devel-
oping the algorithm, with an additional 60 min from 70
additional recordings for testing it (Gilkerson et al., 2008b).

The resulting LENA� software takes as input a new
audio recording and processes it incrementally in short
windows, extracting a variety of acoustic features which are
used to classify the audio stream into segments of at least
600 ms in length (or longer for some of the categories) using
a minimum-duration Gaussian mixture model (MDGMM;
Xu et al., 2009). Silence may be included to “pad” segments
to this minimum duration. The segments are classified
according to a set of broad speaker and non-speaker classes.
The speaker classes are: Male Adult, Female Adult, “Key”
Child (i.e., the one wearing the recorder) and Other Child.
The non-speaker classes are: Noise, Television (including
any electronics), Overlap (speech overlapped with other
speech or nonspeech sounds), and Silence (SIL). With
the exception of Silence, these classifications are then
passed through a further likelihood test between the original
classification for a given segment and the Silence class, the
result of which determines whether they are “Near” (high
probability of being that class) or “Far” (low probability;
i.e., they may be silence instead). Given the large number of
acronyms and labels of various kinds, we provide a listing
of relevant LENA� abbreviations in Table 1.

After this broad speaker classification step, Female or
Male Adult “Near” segments (FAN and MAN) are further
processed using an adaptation of the Sphinx Phone Decoder
(Lamere et al., 2003) in order to form an automated estimate
of the number of words in each segment (Adult Word Count,
or AWC). Key Child (CHN) segments are further processed
to sub-classify regions in them into vegetative noises,
crying, and speech-like vocalizations. LENA� provides
counts (child vocalization count, or CVC) and durations for
this last speech-like sub-segment category. A further metric,

Table 1 A partial listing of common LENA abbreviations and their meanings

Abbreviations Meanings

FAN, MAN, CHN, CXN Basic “meaningful speech” (near and clear speech) categories used by LENA for further processing:
Female Adult Near, Male Adult Near, Key Child Near and Other Child Near categories respectively.

NON, TVN, OLN, SIL Basic non-speech categories: Noise Near, Television Near, Overlap Near, Silence.

FAF, MAF, etc. “Far” (low probability) versions of each Near category.

Key child Child wearing recorder

AWC Adult Word Count (estimated within FAN and MAN vocalizations)

CVC Child Vocalization Count (estimated for non-cry, non-vegetative portions of CHN)

CTC Conversational Turn Count (estimated for turns between FAN or MAN and CHN)
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Conversational Turn Counts (CTC), reflects the number of
alternations between an adult and the key child (or vice
versa), bounded by a maximum 5s of non-speech.

Previous validation work

A recent systematic review (Cristia et al., 2020) found 28
papers containing 33 studies that reported on the accuracy of
the LENA� system’s labels and/or derived metrics (AWC,
CVC, CTC). They conclude that there are:

“good results [overall]: recall and precision higher
than 58.80% based on up to 13 nonindependent
studies, strong correlations for AWC (mean r = .79,
on N = 13, and a mean RER = 13.76, on N = 14), and
a similarly high correlation for CVC (mean r = .77,
on N = 5, with a mean RER = -24.17, on N = 6). The
exception to this general trend toward good perfor-
mance was CTC, with a mean correlation of r = .36,
on N = 6, and a mean RER = -34.20, on N = 5.”

The systematic review also identified several limitations
of previous validation work. First, for the majority of
included studies, the validation component was not fully
evaluated by peer review. Even if the study may have
appeared in a peer-reviewed journal, the validation in itself
was often a secondary goal to support a different research
objective, and therefore often lacked methodological details
or even full results. For instance, Seidl et al. (2018) report on
validation of LENA� labels among children at familial risk
for autism in a one-paragraph appendix to the paper, which
only mentions confusions between female adult and child.
This leaves unclear whether confusions between Key child
and any other category (Other child, Male adult, Silence,
etc.) were ignored or considered to be errors. While this
approach may be reasonable for a given study’s research
goals, it has the undesirable side effect of creating the
impression that LENA� metrics are widely validated, while
in fact validation methods may not have been reported or
evaluated in detail.

Second, previous studies typically did not take silence,
noise, or overlap into account in the reported confusion
matrices or other accuracy measures, particularly within
segments. That is, if a LENA� segment labeled “key child”
contained one second of silence and two seconds of speech
by the key child, the full three second clip may be tagged
as “correct” though it was only 67% correct, leading to an
overestimation of the accuracy of the “key child” label.

Third, a majority of previous validation studies used
the LENA� output itself to select the sections that
would be annotated for validation (in Cristia et al., 2020,
this held for 16/29 studies that specified the method of
selection). For instance, clips may have been selected

for manual annotation on the basis of high AWC and/or
CTC according to the algorithm. This unfortunately leads
to biased sampling: Since LENA� only counts words
within FAN and MAN segments and conversational turns
involving FAN/MAN alternations with CHN in close
temporal proximity, high AWC or CTC can only occur in
sections of the recording that are “clean” enough for the
algorithm to parse; otherwise, most of the section would
have been classified as overlap (OLN), which does not count
towards AWC or CTC. This would tend to bias these reports
toward a higher level of accuracy than would be obtained
across the full recording.

Fourth, previous validation work has typically focused
on a single corpus, participant population, age range, and
language. As a result, although considerable variation in
performance has sometimes been reported (e.g., Canault
et al. 2016; Gilkerson et al. 2016) it is difficult to
assess whether a numerical difference in accuracy found is
significant, and if so, whether this is due to a difference in
the way the corpus was constituted and annotated, rather
than on how LENA� fares with that population, age range,
and language.

The present work

We sought to assess the validity of the output provided
by LENA� through an approach that complements the
preceding literature. Specifically, we report an evaluation
of all speech labels, also considering non-speech labels
(notably silence, overlap, and TV, with limitations in our
approach to be discussed below); as well as the system’s
key derived metrics: Child Vocalization Counts (CVC),
Conversational Turn Counts (CTC), and Adult Word Counts
(AWC). We aimed to address several of the limitations
found in the body of previous work.

First, to maximally avoid potential bias in our annota-
tions, we used random or periodic sampling (detailed below)
to choose which sections of daylong recordings to anno-
tate, and did not give annotators access to the LENA�

output. Second, the fact that annotators did not have access
to the LENA� segmentation allowed an assessment of the
accuracy of the segmentation itself as well as categori-
cal labeling. Specifically, LENA� and human annotations
were compared every 10 ms. This allows us to capture a
much finer-grained representation of the auditory environ-
ment (i.e., if LENA� classified a 2-s audio segment as FAN,
but .8 s of this was actually non-speech noise or a different
talker, in our analysis LENA� would be credited only for
the proportion that was correct).

Third, to gain traction on generalizability, rather than
focusing on a single sample that either mirrors or diverges
from LENA�’s original population, we included five
corpora. Three corpora sampled from the same population,
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language, dialect, and age group the LENA� software was
developed with. A fourth corpus was chosen to allow an
extension to a different dialect of English. The fifth corpus
constituted an extension to a totally different recording
condition (a rural setting, with large families and many
children present, in a typologically different language).
The age range also varies a great deal, and it is slightly
higher in this last corpus. By and large, one could expect
accuracy to decline in the sample of children who spoke a
different English dialect compared to the three samples that
matched better the data the LENA� software was developed
with; and one could predict an even greater reduction in
accuracy for the group that is learning a completely different
language and which further mismatches in age (see other
work on age- and language-mismatching samples, Busch
et al. 2018; Canault et al. 2016).

Finally, the present study relies on a collaborative effort
across several labs. The annotation pipeline was identical
for four of the corpora, and conceptually comparable to the
fifth (as detailed below). This allows us to more readily
answer questions regarding differences in reliability as a
function of e.g., child age and language. This approach also
let us better infer the likelihood with which our results will
generalize to other corpora, provided the annotation scheme
is conceptually comparable.

Methods

This paper was written using RMarkDown (Baumer et al.,
2014) in RTeam et al. (2013) running on RStudio (2019).
It can be downloaded and reproduced using the data also
available from the Open Science Framework, https://osf.io/
zdg6s. These online Supplementary Materials also include a
document with the full output of all models discussed here
as well as additional analyses.

Corpora

The data for the evaluation comes from five different
corpora, annotated in the context of two research projects.
The largest one is the ACLEW project (Bergelson et al.,
2017; Soderstrom et al., 2019); in this paper, we focus on four
different corpora of child daylong recordings that have been

pooled together, sampled, and annotated in a coordinated
manner. These four corpora are: theBergelson corpus (“BER”)
from US English families from the upstate New York
area (Bergelson, 2016), the LuCiD Language 0–5 corpus
(“L05”) consisting of English-speaking families from
Northwest England (Rowland et al., 2018), the McDivitt and
Winnipeg corpora (“SOD”) of Canadian English families
(McDivitt & Soderstrom, 2016), and the Warlaumont
corpus (“WAR”) of US English from Merced, California
(Warlaumont et al., 2016). Some recordings in BER,
and all recordings in SOD and WAR are available from
HomeBank repository (VanDam et al., 2016). The second
project contains a single corpus collected from Tsimane’-
speaking families in Bolivia (“TSI”; Scaff et al. 2019).
Socioeconomic status varies both within and across corpora.
Keyproperties of the five corpora are summarized in Table 2.

Despite these differences, all five corpora consist of long
(4–16 h) recordings collected as children wear a LENA�

recorder in a LENA� vest throughout a normal day and/or
night. For the four ACLEW corpora, out of the 106 recorded
participants, daylong recordings from ten infants from each
corpus were selected to represent a diversity of ages (0–
36 months) and socio-economic contexts. In the SOD
corpus, sensitive information was found in one of the files,
and thus one child needed to be excluded. The tenth day
for this corpus was a second day by one of the nine
included children. From each daylong file, fifteen 2-min
non-overlapping sections of audio (with a 5-min context
window) were randomly sampled from the entire daylong
timeline for manual annotation. In total, this leads to 20
h of audio, and 4.6 h of annotated speech/vocalizations
(collapsing across all speaker categories).

The TSI corpus consisted of one or two recordings from
13 children, out of the 25 children recorded from field
work that year; the other 12 had been recorded using other
devices (not the LENA� hardware). From these files, 1-
min segments were sampled in a periodic fashion. That is,
for each recording, we skipped the first 34 min to allow
the family to acclimate to the recorder, and then extracted 1
min of audio (with a 5-min context window) every 60 min,
until the end of the recording was reached. This resulted in
a total of 4.5 h of audio, and 0.7 h of speech/vocalizations
(collapsing across all speaker categories).

Table 2 Key properties of the five corpora

Corpus Children Clips Clip duration (seconds) Mean Age [range] (months) Location

WAR 10 150 120 6.3 [3-9] Western US

BER 10 150 120 11.2 [7-17] Northeast US

SOD 9 150 120 12.3 [2-32] Western Canada

L05 10 150 120 20 [11-31] Northwest England

TSI 13 272 60 34 [15-58] Northern Bolivia

https://osf.io/zdg6s
https://osf.io/zdg6s
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We chose to sample 1 or 2 min at a time (TSI, and
ACLEW corpora, respectively) because conversations are
likely to be bursty (Goh & Barabási, 2008). That is, it is
likely the case that speech is not produced at a periodic
rate (e.g., one phrase every 20 s), but rather it occurs in
bursts (a conversation is followed by a long period of silence
between the conversational partners, followed by another
bout of conversation, perhaps with different interlocutors,
followed by silence, and so on). In this context, imagine that
you sample a 5-s stretch. If you find speech in that stretch,
then it is likely you have by chance fallen on a conversation
bout; if you do not find speech, then you have likely found
a silence bout. If you were to extend that selection out
to several minutes, then it is likely that you will simply
add more material from the same type (i.e., conversation
bout or silence bout). As a result, any sampling method
that favors medium-sized stretches (5–15 min) will tend
to end up with samples that are internally homogeneous
(throughout the 5–15 min, there is a conversation, or there
is silence throughout). If smaller clips are sampled out, this
heterogeneity is still captured, but (keeping the total length
of audio extracted fixed) the number of clips that can be
extracted is larger, thus likely increasing the likelihood that
results will generalize to a new section of the audio.

In the five corpora, the 1- or 2-min samples were
annotated for all hearable utterance boundaries and talker

ID. In the ACLEW corpora, several talker IDs reflected
unique individual talkers, but were coded in such a way as
to readily allow mapping onto LENA�s talker categories,
e.g., key child, other child 1, female adult 1, female adult 2
(Bergelson et al., 2019 for the general annotation protocol;
cf. Casillas et al., 2017; Soderstrom et al., 2019, for an
introduction to the databases). The ACLEW datasets also
had other coding levels that will not be discussed here. In
the TSI corpus, only the key child and one female adult
whose voice recurred throughout the day were individually
identified, with all other talkers being classified on the basis
of broad age and sex into male adult, female adult, and other
children.

Processing

Several different time units are needed to clarify how each
metric is calculated (see Fig. 1). Clips refer to the 1- or
2-min samples extracted from recordings (TSI corpus and
ACLEW corpora, respectively). This is the basic unit at
which CVC and CTC can be established. In addition, since
most previous work evaluating AWC did so at the clip level,
we do so here as well.

The other metrics require a more detailed explanation,
conveyed graphically in Fig. 1. The stretch of time that has
been assigned to a speech or non-speech class by LENA�

Fig. 1 Levels at which performance is evaluated. Notice that there are
multiple clips extracted from each recording; each clip can have zero or
more segments; frames (10 ms) are not shown because they would be
too small in this scale. Adult Word Count (AWC), Child Vocalization
Count (CVC), and Conversational Turn Count (CTC) are calculated at
the level of the 1- or 2-min-long audio extracts (clips). Misses, false

alarms, confusions, as well as class precision and recall depend on 10-
ms frames, and are totaled both at the level of individual clips and
over the full audio extracts.“f” above indicates 10-ms frames. N.B. for
example’s sake we assume each child vocalization above has a single
linguistic vocalization
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is a segment. In one clip, there may be just one long
segment (e.g., the whole clip has been assigned to Silence
by LENA�); or there may be more (e.g., the first 5 s are
attributed to the key child, then there is a 50-s Silence
segment, and the final 5 s are attributed to a Female Adult).
In the LENA� system’s automated analysis, only one of
these categories may be active at a given point in time. In
contrast, colloquially, “utterance” or “vocalization” refers
to stretches of speech detected by humans and assigned to
different talkers. To be clear: in what follows, clips may
have zero or more utterances. Unlike in the LENA� system,
however, in the human annotation a given point in time may
be associated with multiple speakers.

Given that there need not be a one-to-one correspondence
between LENA� segments and human utterances, we need
to define smaller time units that can be used to check for
classification agreement. In this paper, we use 10 ms frames.
This is the basic time unit used for all classification accuracy
estimations, which are introduced in more detail in the next
subsection.

LENA� classification accuracy Our first goal was to estab-
lish LENA� talker tag accuracy, particularly for the four
broad LENA� talker categories (key child, other child,
female adult, male adult; or CHN, CXN, FAN, MAN),
while taking into account other categories (with some lim-
itations on their interpretation clarified below). We cal-
culated accuracy in two complementary ways. First, we
used three frame-based standard metrics of speech and
talker segmentation to allow direct comparison with other
systems in the speech technology literature (False Alarm
Rate, Miss Rate, Confusion Rate). We also use Identi-
fication Error Rate, which is derived by summing the
first three metrics; together these provide a stringent and
standard test of accuracy. Second, we used frame-based
precision and recall of each category to provide an intu-
itive representation of the error patterns shown by this
system.

Since these metrics establish errors relative to speech
quantity, a problem emerges when there is no speech
whatsoever in a given file. This is never discussed in
the speech technology literature, because most researchers
working on this are basing their analyses on files that have
been selected to contain speech (e.g., recorded in a meeting,
or during a phone conversation). We still wanted to take
into account clips with no speech because this was central
for our research goals: We need systems that can deal well
with long stretches of Other (i.e., non-speech or silence),
because we want to measure in an unbiased manner how
much speech (and silence!) children hear. Unfortunately, in
the 30% of clips that had no speech whatsoever, the false
alarm, miss, and confusion rates are all undefined, because
the denominator is zero. To be able to take clips with no

speech into account, we defined the following rules. First,
if a clip had no speech according to the human annotator,
while LENA said there was speech, then the false alarm
rate was 100%, and the miss and confusion rates were zero.
Second, if on the contrary, both the human annotator and
LENA said there was no speech, then all the error rates
were zero. Notice that when the denominator is very small
because there is very little speech, the ratio for these two
metrics ended up being a very large number, resulting in
what may be outliers.

Speech and talker segmentation metrics The original cod-
ing was converted using custom-written python scripts into
a standard adaptation of the “Rich Transcription Time
Mark” (rttm) format (Ryant et al., 2019), which indicates,
for each vocalization or segment, its start time, duration, and
speaker. This representation was used in pyannote.metrics
(Bredin, 2017) to compute four standard identification met-
rics: rate of false alarm for speech, rate of misses for speech,
rate of confusion between talkers, and the derived identi-
fication error rate (IDER). These are calculated with the
following formulas at the level of each clip, where FA (false
alarm) is the number of frames during which there is no
talk according to the human annotator but during which
LENA� found some talk; M (miss) is the number of frames
during which there is talk according to the human annota-
tor but during which LENA� found no talk; C (confusion)
is the number of frames correctly classified by LENA�

as containing talk, but whose voice type has not been
correctly identified (when the LENA� model recognizes
female adult speech where there is male adult speech for
instance), and T is the total number of frames that contain
talk according to the human annotation:

• False Alarm rate = FA/T (T=Total # of frames that
contain talk),

• Miss rate = M/T,
• Confusion rate = C/T,
• IDentification Error Rate (IDER) = (FA+M+C)/T

In the human annotation, there is no class representing
overlapping speech as such. For the sake of completeness
and comparison with the LENA� model, if two or more
different sources were active at the same time according to
the human annotators, these frames have been mapped to
the class “overlap” post hoc. This allows us to compare this
Overlap class to the LENA� system’s OLN (and, for the
precision/recall analysis introduced next, OLF).

However, our overlap category is not defined identically
to the LENA� overlap category. For LENA�, overlap
between any two categories is labeled OLN—i.e., Noise
+ CHN would be counted towards overlap as would
FAN+FAN; whereas for us, only overlap between two
sources (e.g., key child and female adult, key child and
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electronic speech; but not key child + noise since noise
was not coded) counts as overlap. Similarly, the TVN
LENA� class is not equivalent to the electronic speech tag
in the ACLEW coding, because the former also includes
music, singing, crowd noise and any other sound coming
from a TV or another electronic source, whereas the latter
only includes speech from an electronic source. Therefore,
Table 3 mentions some correspondences, but since these are
not perfect, additional analyses map overlap and electronic
classes onto “Other” post hoc, so as to not penalize LENA�

due to a divergence in coding criteria.

Precision and recall This evaluation looks in more detail at
the pattern of errors, by assessing how LENA� and human
annotators agreed and disagreed. In both precision and
recall, the numerator is the intersection between a LENA�

tag and a human tag (e.g., the number of frames that
LENA� classified as CHN and the annotator classified as
Key child). The denominator differs: To calculate precision,
we divide that number by the total number of frames
attributed to a category by LENA�, whereas for recall, we
divide by the total number of frames attributed to a category
by the human annotator.

Agreement When two or more annotators provide data on
the same classification, one can calculate agreement. We
report on Cohen’s κ as a measure of the extent to which
LENA� and human annotators coincide in their labeling.

CVC and CTC evaluation

From the human annotation, each vocalization by the
key child counted towards the total Child Vocalization
Count (CVC) for a given clip if and only if the vocaliza-
tion had been annotated as being linguistic (canonical or

Table 3 Correspondence between LENA and our human annotation
tags for each talker type

Talker LENA Human

Key Child CHN CHI

Other Child CXN OCH

Female Adult FAN FEM

Male Adult MAN MAL

Electronics TVN* ELE*

Overlap OLN OVL

Additional analyses remove one or both of the last two rows.
*Electronic voices were only annotated in the ACLEW dataset. N.B.
Although some Tsimane’ families listen to the radio, radio speech was
not annotated in the TSI corpus

non-canonical in the ACLEW notation).1 For the Conversa-
tional Turn Count (CTC), a sequence of key child and any
adult (or vice versa) within 5 seconds counted towards the
clip total CTC. The Pearson correlation across LENA� and
human estimations was then calculated.

Users may also wish to interpret the actual number of
vocalizations or turns found by LENA�. Therefore, it is
important to also bear in mind errors, error rates, and
absolute error rates. Despite the similarity in their names,
these three metrics provide different information. We define
error as follows: given a LENA� estimate, how close the
human-generated value is. This is calculated as NL-NH,
where NL is the number according to LENA� and NH is
the number according to humans; this is done separately for
each clip. By averaging across clips, we then get an idea of
the bias towards overestimation (if this number is positive)
or underestimation (if this difference is negative).

In contrast to error, error rate computes this bias in
relation to the actual number of vocalizations tagged by the
human coder: (NL-NH)/NH. For instance, imagine that we
find that LENA� errs by 10 vocalizations according to the
average error; this means that, on average across short clips
like the ones used here, the numbers by LENA� would be
off by ten vocalizations. By using the error rate, we can
check whether this seemingly small difference is indeed
small relative to the actual number found. That is, an error
of ten vocalizations would be less problematic if there were
100 vocalizations on average (in which case LENA� would
be just 10% off) than if there were ten (LENA� would be
doubling the number of vocalizations). As with error, the
sign of this difference indicates whether LENA� tends to
over- or under-estimate these counts.

Finally, the absolute error rate is calculated with the
formula abs(NL-NH)/NH, where abs indicates absolute
value. As a result, it cannot be used to assess systematic
under- or over-estimation biases, but rather gives an idea of
how accurate the estimates are at the clip level (statistically

1In a previous version of this analysis, we had calculated CVC
as the number of CHN segments in LENA�, and the number
of linguistic vocalizations as tagged by human annotators. Further
inspection of LENA� documentation revealed this was incorrect,
since LENA� counts can include several linguistic vocalizations
within one CHN segment, and also includes linguistic vocalizations
from CHF segments. Given the inaccuracy of CHF, the latter decision
seems potentially problematic. The same issue affected our CTC
analyses. We now present analyses here that correctly represent
LENA�’s reported CVC and CTC, since these are the field-standard
measures. In the Supplementary Materials (https://osf.io/zdg6s), we
show results of the correlations and error analyses when CVC and
CTC are calculated as the number of CHN/CHI segments instead. For
CVC, the results are identical; for CTC results were slightly worse
results than those reported here. For both CVC and CTC analyses,
71 files from 7 children (6 from ROW and 1 from SOD) had to be
excluded because child vocalizations were present but they had not
been classified as canonical or non-canonical.

https://osf.io/zdg6s
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speaking). To convey this intuitively, one could find an error
of 0 together with an error rate of 0 because half of the
samples are -100 vocalizations off (for the error) or -100%
off (for the error rates), with the other half behaving in the
exact opposite fashion. The absolute error rate then avoids
this kind of cancellation by removing the polarity (+/-) of
the error.

AWC evaluation

For the AWC portion of this evaluation, we could only
use transcriptions from the four ACLEW corpora, since the
TSI corpus has not been transcribed (and thus lacks human
word counts). Annotators for the four ACLEW corpora
were proficient in the language spoken in the daylong
recording, and transcribed all adult speech in keeping
with minCHAT format (e.g., “wanna”, not “want to”,
MacWhinney 2017).

One child in the (otherwise English) SOD corpus was
learning French. Given our definition of orthographic words
which is not language-specific, we have included this child
to increase power, but results without them are nearly
identical. See online Supplementary Materials, https://osf.
io/zdg6s, for analyses excluding this child. In addition,
a total of nine clips from three different WAR children
contained some Spanish. Since we are uncertain of how
accurate the transcriptions are for Spanish sentences, these
clips were removed from consideration altogether.

Human AWC were determined by counting all unam-
biguously transcribed words spoken by adult talkers. This
was achieved by first discarding all non-lexical transcript
entries such as non-linguistic communicative sounds, par-
alinguistic markers, and markers indicating incomprehen-
sible speech. In addition, all utterances from the key child
and other children were omitted from the human AWC.
The remaining orthographic entries separated by whites-
paces were then counted as gold standard target words for
LENA� to detect.

The 1- or 2-min clips sampled for manual annotation
were not guaranteed to perfectly align with LENA�

segments (i.e., talker onsets and offsets), posing a potential
issue for comparing LENA� AWC relative to the human
annotated word count. Of all LENA� segments found
within the extracted clips, 14% straddled a clip boundary
(i.e., the segment began before the clip started; or it ended
after the extracted clip ended). To match LENA� AWCs
with the annotated word counts, words from these straddling
LENA� segments were included proportionally. That is, if
10% of the duration of a LENA� segment fell within a clip,
10% of the LENA� AWC estimate for that segment was
included in the LENA� word count estimate for that clip.
AWC was evaluated using Pearson correlations and error
analyses, similarly to CVC and CTC.

Results

Before starting, we provide some general observations
based on the manual human annotations. The “Other”
category (meaning no speech, potentially silence but also
non-human noise) was extremely common, constituting
71% of the 10-ms frames. In fact, 30% of the 1 to 2-
min clips contained no speech by any of the speaker
types (according to the human annotators). As for speakers,
female adults made up 10% of the frames, the child
contributed to 7%, and male adult voices, other child voices,
and electronic voices were only found in 3% of the frames
each. Overlap made up the remaining 3% of frames. The
following consequences ensue. If frame-based accuracy is
sought, a system that classifies every frame as Other (i.e.,
absence of speech) would be 71% correct. This is of course
not desirable, but this fact highlights that systems well
adapted to this kind of recording should tend to have low
false alarm rates, being very conservative as to when there
is speech. If the system does say there is speech, then a
safe guess is that this speech comes from female adults,
who provide a great majority of the speech, nearly 1.5 times
as much as the key child and 2 times more than other
children or male adults. In fact, given that speech by male
adults and other children is relatively rare, a system that
makes a lot of mistakes in these categories may still have a
good global performance, because males and other children
jointly accounted for only 6% of the frames (Table 4).

LENA� classification accuracy: False alarm, miss, confusion
rates

The analysis that yields the best LENA� performance
(Table 5, Speakers) focuses on the clean human speaker
categories while mapping electronic voices and overlap in
the human annotation onto Other, so that the categories
considered in the human annotation are FEM, MAL, CHI,
OCH, alongside using only CHN, FAN, MAN, and CXN
as speakers in the LENA� annotation, (with all “far”
categories, TVN, and OLN all mapped onto Other; see
Tables 1 and 3). Calculated in this way, LENA�’s false

Table 4 Number of frames, percentage of frames, and number of
minutes attributed to each category by the human annotators

Frames Percentage Minutes

CHI 587,950 7 98

FEM 891,936 10 149

MAL 234,187 3 39

OCH 262,701 3 44

OVL 271,427 3 45

ELE 218,535 2 36

Other 6,365,264 71 1,061

https://osf.io/zdg6s
https://osf.io/zdg6s
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Table 5 False Alarm Rate (FAR), Miss Rate (MR), Confusion Rate, and total Identification Error Rate (IDER, sum of the medians of the other
three categories), as a function of which categories are considered

Overall Mean Median

FAR MR CR IDER FAR MR CR IDER FAR MR CR IDER

Speakers 13 56 11 79 26 37 12 70 5 37 8 71

+ Electronic 44 24 38 107 83 19 36 126 20 10 35 86

+ Overlap 60 22 42 124 122 16 42 166 28 8 41 98

Speakers indicates that only speaker categories are considered (all others are mapped onto Other); + Electronic that also electronic was scored;
+ Overlap that electronic and overlap in both human and LENA annotations were also scored. To be maximally informative, we report results in
three ways: (1) weighted by speech: Overall false alarm, miss, and confusion rates over all clips together, thus giving more weight to clips with
more speech; (2) equal weight per clip: means across clips, which represent central tendency when giving equal weight to clips with more versus
less or no speech; and (3) accounting for potential outliers: since means are not robust to outliers, we also report the median across all clips

alarm rate (i.e., tagging a speech category when there was
none) and confusion rate (i.e., providing the wrong label)
were lowest. Notably, however, themiss rate (i.e., the system
returns a judgment that no sound label is activated) was
double that found with the other analysis alternatives.

In the second-best performing case (Table 5, +Elec-
tronic), overlap found in the human annotation is still
mapped onto Other but Electronic voices are not, so that
the human categories considered were CHI, FEM, MAL,
OCH, and ELE; and the LENA� categories considered
were CHN, FAN, MAN, CXN, and TVN (with all “far”
classes and OLN mapped onto Other).

Finally, performance was worst when we included
also overlapping regions (Table 5, +Overlap), such that
the human categories considered were CHI, FEM, MAL,
OCH, overlap, and electronic; and the LENA� categories
considered were CHN, FAN, MAN, CXN, OLN, and TVN.
It is likely that these differences are partially due to OLN
and TVN not being defined similarly across the LENA�

system and human annotators.

LENA� classification accuracy: Precision and recall

By now, we have established that the best performance
emerges when “far” labels such as CHF and OLF are
mapped onto Other, as are TVN/ELE and OLN/OVL.
False alarm, miss, and confusion rates are informative but
may be insufficient for our readers for two reasons. First,
these metrics give more importance to correctly classifying
segments as speech versus non-speech (false alarms +
misses) than confusing talkers (confusion). Second, many
LENA� users are particularly interested in the key child.
The metrics reported thus far do not give more importance
to certain classes (such as key child), and they do not give
us insight into the patterns of error made by the system.

We therefore turn to precision and recall. Looking at
precision of speech categories is crucial for users who
interpret the LENA� system’s estimated quantity of adult

speech or key child speech, as low precision means that
some of what LENA� called e.g., key child was not in
fact the key child, and thus it is providing overestimates.
Looking at recall may be most interesting for users who
intend to employ LENA� as a first-pass annotation: the
lower the recall, the more is missed by the system and
thus cannot be retrieved (because the system labeled it
as something else, which will not be inspected given the
original filter).

This subsection shows confusion matrices, containing
information on precision and recall, for each key category.
For this analysis, we collapsed over all human annotations
that contained overlap between two classes into a category
called “overlap”. Please remember that this category is not
defined the same way as the LENA� overlap category.
For LENA�, overlap was a trained class, and annotators
had tagged overlap between two speakers of the same kind
(e.g., two female adults) as well as overlap between any
of the non-speech classes they were coding (e.g., overlap
between noise and TV).We also define overlap as two active
classes activated at the same time, but only speech (human
or electronic) has been tagged, and can count as overlap in
the human annotation.

LENA� classification accuracy: Precision We start by
explaining how to interpret one cell in Fig. 2: Focus on
the cross of the human category (i.e., row) FEM and the
LENA� category (i.e., column) FAN; when LENA� tagged
a given frame as FAN, this corresponded to a frame tagged
as being a female adult by the human 60% of the time. The
remaining 40% of frames that LENA� tagged as FAN were
actually other categories according to our human coders:
18% were Other (i.e., absence of speech), 10% were in
regions of overlap between speakers or between a speaker
and an electronic voice, and 12% were confusions with
other speaker tags. Inspection of the rest of the confusion
matrix shows that FAN and CHN are the LENA� tags with
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Fig. 2 Precision: Confusion matrix between LENA (x-axis) and
human annotations (y-axis). In each cell, the top number indicates
the percentage of all frames in that LENA category (column) that are

labeled as a given class by the human (row); cells in a given column
add up to 100%. The number below indicates number of frames in that
intersection of LENA and human classes

the greatest precision (setting aside the Other class, i.e., lack
of speech).

Indeed, precision for CHN is identical, at 60%; thus, over
half of the frames labeled as the key child are, in fact, the key
child. The majority of the frames that LENA� incorrectly
tagged as being the key child are actually Other (that is,
silence or more generally lack of speech) according to the
human annotator (21%), with the remaining errors being
due to confusion with other categories. About 6% of them
are actually a female adult; 4% are another child, and 7% are
regions of overlap across speakers, according to our human
coders.

Lower precisions are found for MAN (43%) and CXN
(27%). The pattern of errors is somewhat different from the
other two categories we looked at, due to greater confusion
with the other label within the same age class. That is,
22% of the frames LENA� tagged as being MAN actually
corresponded to female adult speech according to the human
annotation. It was also not uncommon to find a CXN tag for
a frame human listeners identified as a female adult (13%),
but even more confusions involved the key child (23%). In a

nutshell, this suggests increased caution before undertaking
any analyses that rely on the precision of MAN and CXN,
since most of what is being tagged with these talker codes
by LENA� is other speakers or Other (i.e., silence, absence
of speech).

Another observation is that the “far” tags of the speaker
categories do tend to more frequently coincide with regions
where humans did not detect speech (i.e., Other; 67%) than
the “near” tags (36%), and thus it is reasonable to exclude
them from consideration for most purposes.

The relatively high proportion of near LENA� tags that
correspond to Other (i.e., absence of speech) regions (range,
18–76%) could be partially due to the fact that the LENA�

system, in order to process a daylong recording quickly,
does not make judgments on short frames independently,
but rather imposes a minimum duration for all speaker
categories, padding with silence in order to achieve it.
Thus, any key child utterance that is shorter than .6 s
will contain as much silence as needed to achieve this
minimum (and more for the other talker categories). Our
system of annotation, whereby human annotators had no
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access whatsoever to the LENA� tags, puts us in an ideal
situation to assess the impact of this design decision. That
is, any manual annotation that starts from the LENA�

segmentation would likely bias the human annotator to
ignore such interstitial silences to a greater extent than if
they have no access to the LENA� tags. We inspected how
often this padding by the LENA� system occurred and
found that it was quite common: About half of the key
child’s linguistic and non-linguistic vocalizations tagged in
any given clip were shorter than 600 ms long, and thus, if
alone, would have been padded by LENA� with silence
automatically.

These precision analyses shed light on the extent to
which the LENA� tagged segments contain what the
speaker tag name indicates, relative to human coders. We
now move on to recall, which indicates a complementary
perspective: how much of the original annotations humans
attributed to a given class was captured by the corresponding
LENA� class.

LENA� classification accuracy: Recall Again, we start with
an example to facilitate the interpretation of Fig. 3. As seen
at the intersection of human CHI (last row) and LENA�

CHN (first column), the best performance for a talker
category for recall is CHN: 50% of the frames humans
tagged as being uttered by the key child were captured by
the LENA� under the CHN tag. Among the remainder of
what humans labeled as the key child, 11% was captured by
the LENA� system’s CXN category and 20% by its OLN
tag, with the rest spread across several categories.

This result suggests that an analysis pipeline that uses
the LENA� system to capture the key child’s vocalizations
by extracting only CHN regions will get half of the
key child’s speech. If additional manual human vetting is
occurring in the pipeline, researchers may find it fruitful
to include segments labeled as CXN, since this category
actually contains a further 11% of the key child’s speech.
Moreover, as we saw above, 23% of the CXN LENA�

tags corresponds to the key child, which means that human
coders re-coding CXN regions could filter out the 77% that
do not, if finding key child speech were a top priority.

Many researchers also use the LENA� as a first pass to
capture female adult speech through the FAN label. Only
32% of the female adult speech can be captured this way.
Unlike the case of the key child, missed female speech is
classified into many of the other categories, and thus there
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Fig. 3 Recall: Confusion matrix between LENA (x-axis) and human
annotations (y-axis). In each cell, the top number indicates the percent-
age of all frames that a human labeled as a given class (row) which

were recovered in a given LENA category (column); cells in a given
row add up to 100%. The number below indicates number of frames in
that intersection of LENA and human classes
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may not exist an easy solution (i.e., one would have to
pull out all examples of many other categories to get at
least half of the original female adult). However, if the goal
is to capture as much of the female speech as possible, a
reasonable solution would be to include OLN regions, since
these capture a further 28% of the original female adult
speech and, out of the OLN tags, 19% are indeed female
adults (meaning that if human annotators are re-coding these
regions to find further female adult speech, they would filter
out 81% of the segments, on average).

For the remaining two speakers (MAL, OCH), recall
averaged 31%, meaning that a third of male adult and other
child speech is being captured by LENA�. In fact, most of
these speakers’ contributions are being tagged by LENA�

as OLN (mean across MAN and CXN 26%) or TV (mean
across MAN and CXN is 10%), although the remaining
sizable proportion of misses is actually distributed across
many categories.

Finally, as with precision, the “far” categories show worse
performance than the “near” ones. It is worth noting that it is
always the case that a higher percentage of frames is captured
by the near rather than the far labels. For instance, out of all
frames attributed to the key child by the human annotator,
50% were picked up by the LENA� CHN label whereas
essentially 0% were picked up by the LENA� CHF label.
This result provides further support that when sampling
LENA� daylong files using the LENA� software, users
likely need not take the “far” categories into account.

LENA� classification accuracy: Agreement using Cohen’s
κ Given results above suggesting that our coding of

electronics may not have coincided with the LENA�

system’s, and that “far” categories are inaccurate, in this
analysis we only consider the following labels for LENA�:
CHN, FAN, MAN, and CXN (all others are collapsed into
an Other category); and the following labels for human
annotators: FEM, MAL, CHI, OCH (all others are collapsed
into an Other category). This analysis revealed a Cohen’s
κ estimated at K(8580000) = 0.44, weighted κ estimated at
K(8580000) = 0.46.

Derived counts’ accuracy

The accuracy of derived counts (CVC, CTC, AWC) is
represented graphically in Fig. 4, statistics are provided in
Table 6, and error metrics in Table 7.

For CVC, there is a strong association between clip-
level counts estimated via the LENA� system and those
found in the human annotation, which is not much affected
when only clips with some child speech (i.e., excluding
458 clips with 0 counts in either the LENA� and/or
human annotations) were considered. This suggests that the
LENA� system captures differences in terms of number
of child vocalizations across clips rather well. The error
analyses reveal that, generally speaking, LENA� has a
slight tendency to underestimate vocalization counts. This
underestimation, however, is not systematic, and cumulating
errors using the absolute error rate suggests that the
deviation from the actual counts might be quite significant.

As for CTC, the association between clip-level LENA�

and human CTC was weaker than that found for CVC,
particularly when only clips with some child speech (i.e.,
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Fig. 4 Child Vocalization Counts (CVC), Conversational Turn Counts
(CTC), and Adult Word Counts (AWC) according to LENA (x-axis)
and humans (y-axis). Each point represents the counts totaled within a
clip. The solid line corresponds to a linear regression fit to data from all

clips; the dashed line corresponds to an analysis excluding clips where
both the human and LENA� found zero counts. The x and y ranges
have been adjusted to be equal regardless of the data distribution
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Table 6 Number of clips (N) and corresponding Pearson’s r
coefficient for CVC, CTC, and AWC

N all r all N r

CVC 801 .758 343 .649

CTC 801 .573 202 .364

AWC 591 .762 303 .698

‘N all’ and ‘r all’ are computed over all clips. ‘N’ and ‘r’ represent
non-null clips only (i.e., having some vocalizations, turns, and adult
words, respectively)

excluding 599 clips with 0 counts in either the LENA�

and/or human annotations) were considered. Inspection
of errors and error rates reveals that LENA� tends to
underestimate turn counts. As with CVC, the bias varied
across clips leading to a substantial cumulative absolute
error rate.

The association between clip-level LENA� and human
AWC in the four English-spoken corpora was strong, even
when only clips with some adult speech (i.e., excluding
288 clips with 0 counts in either the LENA� and/or
human annotations) were considered. This suggests that the
LENA� system captures differences in terms of number of
AWC across clips well. Error analyses for AWC reveal a
different pattern from before, as the system exhibits a slight
tendency to over-estimate AWC. However, this trend was
inconsistent, leading to the highest absolute error rate metric
among the three derived counts.

Effects of age and differences across corpora

The preceding sections include overall results collapsing
across corpora. However, it is possible that performance
would be higher for the corpora collected in North
America (BER, WAR, SOD) than those collected in other
English-speaking countries (L05) or non-English speaking
populations (TSI). Additionally, our age ranges are wide,
and in the case of TSI children, some of the children are
older than the oldest children in the LENA� training set.
To assess whether accuracy varies as a function of corpora

Table 7 Mean (range) for each type of error estimate for CVC, CTC, and AWC

E (range) E-0 (range) ER % (range) AER % (range)

CVC −4 (−38,14) −8 (−38,14) −47 (−100,650) 76 (0,650)

CTC −3 (−45,14) −8 (−45,14) −72 (−100,400) 82 (0,400)

AWC −1 (−211,157) −1 (−211,157) 54 (−100,7400) 124 (0,7400)

Error estimates are: E (error; NL-NH, where NL means the count according to LENA and NH the count according to the human), E-0 (error
excluding clips with a zero count according to human or system analysis), ER (error rate; (NL-NH)/NH*100, in percent of the total), and AER
(absolute ER; abs(NL-NH)/NH*100, in percent of the total, with abs meaning that we take the absolute); ER and AER exclude clips where the
human count is zero

and child age, we fit mixed models. We report on key results
here; for the full model output and additional analyses,
please refer to our online Supplementary Materials (https://
osf.io/zdg6s).

Are there differences in false alarm, miss, and confusion
rates as a function of corpus and child age? Figure 5
represents identification error rate as a function of age and
corpus for individual children. To test the possible impact
of age and corpus statistically, we predicted false alarm,
miss, and confusion rates in the analysis with all “Far”
categories, TVN/ELE, and OLN/OVL mapped onto Other
(which yielded the best results in Section “False alarms,
misses, confusion” above.) Our predictors were corpus,
child age, and their interaction as fixed effects, and child ID
as a random effect. We followed up with a Type III ANOVA
to assess significance (Table 8).

Corpus, child age, and their interaction were never
significant, with the exception of confusion, where the
interaction between corpus and age was significant at α=.05.
To investigate this effect further, we fit a mixed model
predicting confusion rates from child age as fixed and
child ID as random effects on each corpus separately. This
revealed a main effect of age for SOD only (Chisq (1) =
14.53, p = < .001; all other chi-squares were smaller than
2.48, p > .115).

Are there differences in CVC accuracy as a function of corpus
and child age? For CVC, we fit a mixed model where
manually annotated CVC was predicted from LENA�

CVC, in interaction with corpus and age, as fixed factors,
and child ID as a random effect. Results are summarized
in Table 9 (for CVC, CTC, and AWC). Only effects and
interactions involving the LENA� predictor are relevant to
the present work, and will be discussed here. A Type III
ANOVA found a main effect of LENA� CVC, because this
was a good predictor of the human CVC.

Are there differences in CTC accuracy as a function of corpus
and child age? For CTC, we fit a mixed model where CTC
according to the human was predicted from CTC according

https://osf.io/zdg6s
https://osf.io/zdg6s
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Fig. 5 Identification error rate as a function of corpus and child age. Each point represents the median over all clips extracted from the data of
one child. Color and shape indicates corpus: BER in blue circles, L05 is green triangles, SOD in black squares, TSI in gray pluses, and WAR in
purple crossed squares. A number of the children had a median identification error rate of zero due to the fact that they had many clips in which
there was no speech, and LENA had no false alarms, pulling the median to zero

to LENA�, in interaction with corpus and age, as fixed
factors, declaring child ID as a random effect. Our Type III
ANOVA found a main effect of the LENA� CTC estimates,
and no significant interactions.

Are there differences in AWC accuracy as a function of
corpus and child age? Finally, for AWC (which was only
analyzable for the four ACLEW corpora), we fit a mixed
model where AWC according to the human was predicted
from AWC according to LENA�, in interaction with corpus
and age, as fixed factors, declaring child ID as random
effect. The Type III ANOVA revealed, in addition to a main
effect of the LENA� AWC estimates, a three-way and
both two-way interactions involving the LENA� predictor,
which were investigated by fitting additional mixed models
to each corpus separately. An interaction between LENA�

AWC and age was found for BER/WAR as well as SOD,
due to a decreased predictive value of the LENA AWC with

Table 8 Results of Type III ANOVAs on false alarms (FA), misses
(M), and confusions (C): Chi-square (degrees of freedom), followed
by * if the relevant factor is significant (p<.05)

FA M C

Intercept 0.22 (1) 6.51 (1) * 4.87 (1) *

Corpus 1.88 (4) 5.96 (4) 3.63 (4)

Age 0.06 (1) 0.02 (1) 0.13 (1)

Corpus*Age 0.74 (4) 2.48 (4) 14.32 (4) *

respect to the human AWC for older infants in BER and
WAR but an increase with age in SOD. However, it should
be noted that the association between LENA and human
AWC was significant and positive for all four corpora.

Discussion

The aim of the present study was to assess LENA� accu-
racy across key outcome measures: speaker classification
accuracy, Child Vocalization Counts (CVC), Conversational
Turn Counts (CTC), and Adult Word Counts (AWC). We
did this using an approach that sought to avoid inflating
accuracy estimates in several ways. Methodologically, we
used random or periodic sampling to select portions of

Table 9 Results of Type III ANOVAs when predicting human counts
(CVC, CTC, AWC) from LENA counts in interaction with age and
corpus: Chi-square (degrees of freedom), followed by * if the relevant
factor is significant (p<.05)

CVC CTC AWC

Intercept 4.91 (1) * 0.12 (1) 0 (1)

LENA 7.49 (1) * 17.25 (1) * 46.23 (1) *

Age 0.73 (1) 0.33 (1) 0.6 (1)

Corpus 8.42 (4) 3.36 (4) 1.71 (3)

LENA*Age 0 (1) 1.03 (1) 10.51 (1) *

LENA*Corpus 2.12 (4) 8.52 (4) * 15.7 (3) *

Age*Corpus 5.67 (4) 3.32 (4) 1.59 (3)

LENA*Age*Corpus 7.53 (4) 2.72 (4) 18 (3) *
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the files for manual annotation, and our human annota-
tors did not see the LENA� segmentation. Analytically, we
considered both speech and non-speech classes (including
electronic sounds and silence/Other). This permitted a sys-
tematic, extensive, and independent evaluation of LENA�’s
key automated metrics. We also tested generalizability by
analyzing LENA�’s performance across five different cor-
pora: three based on the same population, language, dialect,
and age group that LENA� was established for, and trained
on (North American English); one that allowed us to test
how accurately it captured a different dialect of English (UK
English); and one that tested its performance in a totally
different recording situation (a rural setting with large fam-
ilies and many children present, speaking a linguistically
unrelated language, and where the key children were, on
average, somewhat older). We begin by recapping our key
results.

Our first set of analyses tested overall accuracy, using
established speech and talker segmentation metrics (false
alarm rate, miss rate, confusion rate, and the composite
identification error rate), and evaluated the pattern of errors
in more detail, by assessing how LENA� and human
annotators agreed (precision and recall). We observed
a rather high miss rate (missing or excluding speech
that was there; 56, 24, and 22% across three analyses
options, see Table 5). The false alarm rate (identifying non-
speech/silence as speech; 13, 44, and 58%) and confusion
rate (identifying voice type; 11, 38, and 42%) were low.
The overall identification error rate (which sums across the
three error rates) was relatively high (global 79, 106, and
122%).

To put these numbers in context, we asked the ACLEW
project members to share with us preliminary results of
their ongoing inter-rater reliability study. This study covers
six corpora, including the four ACLEW corpora used
here. For their reliability analyses, they considered the
“gold” to be the original complete annotations, and the
“system” the reliability annotations, which were done later
and in only a subset of the corpus (one minute per day-
long recording, for a total of 60 min across their six
corpora). While we cannot report on these results in full
because their publication is intended elsewhere, we can
state the following overall observations. Among two human
annotators, the ACLEW team reported an identification
error rate of 56% (due to 20% false alarms, 19% miss rates,
and 17% of confusion); for the four databases included
here, the average identification error rate was 47%. This
is considerably lower than the identification error rates
reported for LENA� here (best case scenario yielding an
identification error rate of 79%), mainly due to much lower
miss rates, whereas both false alarm rates and confusion
rates are higher across the two human coders. Inspection of
false alarms and misses suggests the disagreement across

humans emerges when there is background speech, that one
coder may pick up on and not the other.2

Another question is how LENA� fares compared to
other automatic systems. Our thorough review of the liter-
ature revealed that no previous report is comparable: Most
often, the data used is considerably different (and overall
easier; e.g., recorded in formal settings, with a small num-
ber of speakers, who produce long vocalizations); more-
over, previous research tends to overestimate performance
by using lax evaluation criteria (e.g., allowing errors in
a “collar” around each vocalization). The most compara-
ble data point comes from the DIHARD Challenge (Ryant
et al., 2019). DIHARD employed data from a range of
domains, including daylong recordings; in fact, they used a
different selection of data from the BER corpus used here.
The subset of BER used for DIHARD is likely to lead to
lower error rates because they selected only files that con-
tained some speech; by excluding files with little to no
speech, they prevent the appearance of very high diariza-
tion error rates (which emerge when the numerator, i.e.,
the amount of speech, is very small). Thus, the DIHARD
reanalyses are likely to overestimate the systems’ perfor-
mance in terms of data selection. Their evaluation, however,
was as strict as ours, with no leeway or collar. Diariza-
tion error rates for the BER subset by systems submitted
to DIHARD 2019 varied between 48% and 121%, with a
median around 70%. Thus, LENA� is competitive with
respect to state-of-the-art systems, although some of them
do score considerably better.3

Returning to the LENA� system results, the overall
error rate can be fruitfully interpreted by considering
performance on individual speaker tags. In terms of
precision (to what extent do LENA� tags contain what
they say they contain), the system performed relatively
well at identifying female voices (60% of frames tagged
by LENA� as FAN were coded as female adult by
the human coders), and the target child (60% of frames
tagged by LENA� as CHN were correct). However, the
system performed substantially worse with other talker
types (e.g. 43% and 27% for MAN and CXN, respectively);
that is, less than a half of the frames that LENA� tagged as
being speech spoken by these speakers actually correspond
to them.
To get a sense of how these results compare to multiple

2Taking all categories together, Cohen’s κ agreement was .64
(weighted κ .65) for the ACLEW inter-rater reliability coding on all
six ACLEW datasets, which is higher than the best case scenario for
LENA (.46).
3DIHARD uses diarization error rate on individual speakers’ identities,
rather than identification error rates on speaker types as we do here.
There is no mathematical procedure to derive one from the other,
except in the case when there is one speaker per speaker type, in which
case diarization error rate is most likely identical to identification error
rate.
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human coders, we also asked about precision and recall in
the reliability data from the ACLEW team. Across all six
corpora, precision for key child was the highest, at 80%;
for the other speakers it was: 72% female adult, 72% male
adult, and 65% other child. Precision is higher and more
similar across speaker types in the ACLEW reliability data
than in our LENA�-human comparison here.

In terms of recall (how accurately LENA� captured
the human annotations), performance for the key child’s
vocalizations was moderately robust: 50% of the frames
humans attributed to the key child were captured by
LENA� under the CHN tag. However, recall was poorer
for the other three talker types, at around 31-32%. As for
recall in the ACLEW reliability data, the key child score
was 79%; for the other speakers it was: 71% female adult,
63% male adult, and 55% other child. Thus, although we
see lower recall rates for male adults and other children
in both, the overall level of recall is much higher across
two human coders than between LENA� and human,
mainly due to LENA�’s tendency to miss speech more than
humans do. This is, however, sensible for a system aimed at
analyzing day-long recordings, which contain long stretches
of silence.

Our second set of analyses tested the accuracy of three of
the aggregated counts automatically provided by LENA�,
namely CVC, CTC and AWC. We found relatively high
correlations between clip-level counts estimated via the
LENA� system and those from the human annotations for
AWC and CVC, with weaker performance for CTC.

However, such correlational analyses do not establish
whether LENA� systematically over- or under-estimates.
For this we examined several types of error estimates. For
overall error estimates (i.e., how far was the LENA� count
from the human annotators’), the means across clips for
CVC, CTC, and AWC was an encouraging -3.89, -2.69, and
-1.04, respectively. These low errors were not solely due
to many clips lacking vocalizations, turns, or adult words
altogether, because when we exclude such clips we still get
what seem to be low errors: means were -8.22, -8.44, and
-0.67 for CVC, CTC, and AWC, respectively.

We also put these error patterns in context by taking into
account how large the counts were to begin with. Such error
rates, however, are only defined for files which, according
to the human, contain at least one unit (otherwise, we divide
an error of a certain size by zero, which is undefined).
We find error rates suggesting that LENA� counts are
off by between half and three quarters of the original
counts. Inspection of the sign in these rates indicates that,
by and large, LENA� systematically underestimates the
raw counts of its main quantitative measures—particularly
child vocalizations and conversational turns, and to a
lesser extent, adult words, which showed more erratic error

patterns. In addition, the absolute error rate analysis, which
prevents under- and over-estimations from cancelling each
other out, reveals rather considerable errors.

Finally, we also inspected the extent to which LENA�

performance was affected by dialect, language, and child
age in a final set of analyses. We would like to be tentative
about the interpretation of these results, because we only
have about ten children, often varying widely in age, in each
corpus, with some mismatch in age range across corpora
(see Table 2). This means that we did not have a great deal
of power to capture true differences across corpora and that
we may have some spurious effects or interactions due to
chance differences.

With all these caveats in mind, we predicted that
performance would be higher for the corpora collected
in North America (BER, WAR, SOD) than for corpora
collected in other English-speaking countries (L05) or
non-English-speaking populations (TSI), and that accuracy
would decrease with age, since our sample contains children
older than those included in the LENA� training set. This
is not what we found. For instance, we found an interaction
between corpus and age for the confusion rate, due to an
increase in confusion rates for older infants within the SOD
corpus but not in any of the others, a result that we have no
ready explanation for, and which may be a spurious result
given the sample size (ten recordings from nine children,
in this corpus). Similarly, LENA� counts predicted human
counts in the CVC, CTC, and AWC analyses, and although
we did observe some interactions, none of them were easy
to interpret and none explained away the predictive value.
As just mentioned, we are cautious when interpreting these
results, and invite further work on bigger samples (more
data per child, more children per corpus) to ensure sufficient
power and precision.

In general, whether LENA� results are “good enough”
depends largely on the goals of each particular study. For
example, we can describe precision rates of 60% (i.e., 60%
of frames tagged by LENA� as FAN were coded as female
adult by human coders) and 60% (i.e., 60% of frames tagged
as target child were also tagged as such by human coders)
as being reasonably good, because they are much higher
than the system’s precision rates for other speakers (MAN
43%, CXN 27%). Although they are lower than what may
be found across two human raters, some additional level
of error may be expected in an automatic system. Notice
saliently that, despite having been created over a decade
ago, the global performance of LENA� was competitive
when compared to state of the art diarization systems. That
said, whether a particular accuracy rate can be considered
sufficient will depend on the purpose of the study. As a
result, we next provide a set of recommendations to help
researchers make this determination for their goals.
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What research goals can one pursue given the performance
of LENA� segmentation and metrics? In the present cor-
pora, the system’s false alarm rate (i.e., identifying speech
where there was none) was very low while its miss rate
(missing speech that was actually there) was relatively high.
This makes LENA� more suitable for studies in which it
is extremely important not to “invent” speech that is not
there but less suitable for studies in which capturing most,
if not all, of the speech produced is crucial. Based on
these findings, LENA� would be a good tool for finding
“high talk volume” parts of the day for a) careful further
transcription (e.g., of low-frequency events like a certain
grammatical construction of interest), b) annotation of spe-
cific speech characteristics (e.g., mean length of utterance),
or c) comparing relative talk volume across samples. How-
ever, we advise caution in using LENA� when raw quantity
of speech is crucial for the research question, or when
small differences in talk volume might have very significant
theoretical consequences; this is often the case in clinical
populations where children’s own vocalizations can be an
important diagnosis-relevant characteristic (e.g., in children
who are deaf or hard of hearing, individuals with ASD,
speech apraxia, etc.).

Similarly, although the overall confusion rate (i.e.,
incorrectly identifying talkers, such as giving a “female
adult” tag for a “child” utterance) for LENA� was very
low, this does not fully convey the level of accuracy for
speech, particularly when considering every talker type. In
terms of precision, the system’s female adult and key child
categorization was quite accurate, whereas precision was
lower for male adults and other children: the majority of
the frames labeled as male adult or other children did not
in fact contain speech by these speaker types. In terms of
recall, LENA� was fairly good at capturing speech by the
key child as such, but recall was lower for the other talker
categories.

We, thus, recommend caution before undertaking any
analyses that rely on the accuracy (precision and/or recall)
of male adult and other children’s speech. For example, if
the goal is simply to calculate an overall adult word count
(AWC), summing over male and female adult speakers,
some confusion between MAN and FAN is likely not
problematic. However, if the goal of the study is to compare
the relative input from fathers and mothers, LENA� tags are
relatively unreliable and in our view, merit further manual
vetting in most use cases.

As another example (detailed further in the “Recall”
results above), if the goal is to capture as many of the key
child’s vocalizations as possible, it might be worthwhile
to pull out segments LENA� labeled as non-target child,
CXN, (of which 23% was target child speech) as well,
with human coders brought in to filter out non-target
child speech. Indeed, we find that this kind of binary

classification (key child or not) can be readily undertaken
with little training by research assistants in our labs, and
would substantially boost data quality and quantity for child
vocalizations in this use case.

Notably, while we recommend LENA� users be cautious
in their use of LENA� identification and classification,
especially for certain talker classes, our results for LENA�

count metrics suggest these derived counts may be accurate
enough to serve well across a large variety of uses. To
begin with, as far as it is possible to generalize from a
small sample from a handful of corpora, it seems that the
system does not perform a great deal worse for children who
do not correspond to the LENA� training set. Moreover,
correlations between human and LENA� clip-level counts
were high, suggesting that the software accurately captures
differences in counts across clips (even when absolute error
rates were also high). Except for CTC, these correlations
remained quite high even when clips with counts equal
to zero were removed from consideration, suggesting that
LENA� captures gradience in vocalization and adult word
counts.

However, our finding that LENA� generally underes-
timates the quantity of child vocalizations and child-adult
turns deserves further consideration. Further work is needed
to fully understand the nature and extent of this limita-
tion. Our clips were 1–2 min in length, and therefore they
either tended to have very little speech or a lot of it. Error
rates over hours could be smaller, because local errors aver-
age out; or greater, if the LENA� system systematically
underestimates counts. In a LENA� technical report, AWC
accuracy was variable across two 12-hour recordings: 1%
lower than human transcription for one child, but 27% lower
for a second child. This same report notes that AWC accu-
racy quickly plateaus as recording time increases beyond
one hour, leveling to 5-10% in recordings greater than 2
hours in length (Xu et al., 2009). If underestimates are sys-
tematic (as suggested by present results for CVC and CTC,
but not AWC), it may be possible to develop a correction
factor to compensate for this bias.

How to test the reliability of the automated output provided
by LENA� We hope the current paper inspires others to
evaluate and report all aspects of the system, rather than
a subset of metrics. Similarly, extensive evaluations of
LENA� in other corpora would bolster the validation
literature, and be useful for the whole research community.
In fact, it would be ideal if researchers systematically test
the reliability of LENA� counts in their own samples,
especially if they are collecting data from families living in
different environments from those assessed here. Next, we
provide some guidelines for how to go about this. Note that
this requires downloading the audio (.wav) file generated by
LENA� as well as the corresponding LENA� output file.
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First, we recommend a literature search (starting from
Cristia et al., 2020’s a systematic review), to determine
whether there exists reliability data for a similar sample. If
no reliability studies exist, draw 10 x 2 min randomly from
ten children. This is about 3 h, 20 min of data, which takes
roughly 90 h to annotate, in our experience. We recommend
training annotators using the ACLEW Annotation Scheme
https://osf.io/b2jep/, which has an online test annotators
can go through to ensure reliability. Once the manual
annotations are complete, the LENA� annotations can
be extracted and compared against the human annotation
using the code we provide in supplementary materials
(https://github.com/jsalt-coml/lena eval). This will allow
researchers to extract the classification accuracy measures
used here (false alarm rate, miss rate, confusion rate and the
derived identification error rate), as well as CVC, CTC, and
AWC comparing LENA� and human annotations. We note
re-using our code is only possible “off the shelf” for manual
annotations made using the ACLEW Annotation Scheme,
though in principle, it is adaptable to other schemata by
adept programmers.

One issue that may arise is whether data should be
sampled differently to, for example, make sure every class
is represented the same amount of time and/or a minimum
of time. Our understanding is that class imbalance and data
scarceness is an important issue for training, and directly
affects algorithm accuracy (this is a general problem, but
to cite just one example on HMMs, Garcia-Moral et al.,
2011). However, it does not pose the same kind of problem
for evaluation. That is, if there are no samples of a given
category, then accuracy cannot be evaluated; if there are
only a few, then it is possible that these are special in some
way and accuracy estimates may not generalize well to
others. Thus, it would indeed be desirable to have enough
samples of a given label to reduce the impact of each
individual instance, in case they are outliers. That said,
almost any strategy that attempts to boost the frequency
of specific categories risks worsening non-generalizability
concerns. For instance, if one were to over-sample regions
tagged by LENA� as MAN in the hopes of having more
male samples, one may only be capturing certain types of
male speech or acoustic properties. To take this example
further, notice that male speech is our smallest category,
representing 3% of the data. Since we sampled randomly
or periodically, this represents the prevalence of male
speech and the samples that are included are unlikely to be
acoustically biased.

Separately, researchers should reflect on the accuracy
needed for their question of interest. For instance, suppose
we have an evaluation of an intervention where we expect
treatment children to hear 20% more speech than controls,
or an individual difference study where we expect that the

lower fifth of the children hear 20% less speech than the top
fifth. If the intended measure used to compare groups has an
error rate larger than the effect predicted (such as the CTC
error rate we find here), a different algorithm or outcome
metric would be wise.

Conclusions

In conclusion, in this study, we have provided a broad
evaluation of accuracy across the key outcome measures
provided by LENA� (classification, Child Vocalization
Counts, Conversational Turn Counts, and Adult Word
Counts), in a sample of data drawn across different dialects,
languages, ages, and socio-cultural settings. We have
provided some recommendations for how to use LENA� in
future studies most effectively, and how to test the accuracy
of the LENA� algorithms on particular samples of data.

There are, however, a number of areas of research that we
have not addressed. For example, we have not investigated
how accurately LENA� detects individual variation across
children or families. It would be particularly useful to
know whether LENA� can classify children with the
sensitivity and specificity needed for accurate identification
of language disorders. Oller et al. (2010) used LENA� to
differentiate vocalizations from 232 typically developing
children and children with autism or language delay with a
high degree of accuracy. However, key to this was the use
of additional algorithms, not yet available from LENA�, to
identify and classify the acoustic features of “speech-related
vocal islands”. Further work (including shared code) would
greatly bolster progress on this topic.

Even if it turns out that LENA� is not accurate enough
to classify children precisely for a given ability or diagnosis,
it may be accurate enough to capture the rank order of
individual children’s language growth, which can provide
useful information about the relative language level of
children in a sample or population (see, e.g., Gilkerson et al.,
2017). Similarly, LENA� may not accurately capture the
precise number of child vocalizations produced over time,
but it may track developmental trajectory (e.g., the slope of
growth) relatively well. Finally, although our results suggest
that aspects of the system’s output may be relatively robust
to differences across languages and dialects, we need more
evidence of how it fares across mono- and multi-lingual
language environments (cf. Orena, 2019).

It is undeniable that children learn language from the
world around them. Naturalistic daylong recordings offer
an important avenue to examine this uniquely human
development, alongside other fundamental questions about
human interaction, linguistic typology, psychology, and
sociology. Tools and approaches that allow us to tap into
such recordings’ contents stand to contribute deeply to

https://osf.io/b2jep/
https://github.com/jsalt-coml/lena_eval


Behav Res

our understanding of these processes. We look forward to
further work that addresses the many remaining questions
within this area.

Open Practices Statement The study relies indirectly on day-long
audio recordings (which cannot be made public to protect participants)
and human and LENA� annotations for extracted clips (which are
not deidentified); these are stored in private repositories that do not
have a persistent identifier. The annotation data were used to generate
statistics at the clip level, which are the input to analyses presented
here. Both the clip level statistics and analyses in this manuscript are
publicly available from https://osf.io/zdg6s. None of these analyses
were pre-registered. Additional computer code for other levels of
analysis is available from https://github.com/jsalt-coml/lena eval.
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