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Abstract
The LENA system has revolutionized research on language acquisition, providing both a wearable device to collect day-
long recordings of children’s environments, and a set of automated outputs that process, identify, and classify speech using
proprietary algorithms. This output includes information about input sources (e.g., adult male, electronics). While this system
has been tested across a variety of settings, here we delve deeper into validating the accuracy and reliability of LENA’s
automated diarization, i.e., tags of who is talking. Specifically, we compare LENA’s output with a gold standard set of
manually generated talker tags from a dataset of 88 day-long recordings, taken from 44 infants at 6 and 7 months, which
includes 57,983 utterances. We compare accuracy across a range of classifications from the original Lena Technical Report,
alongside a set of analyses examining classification accuracy by utterance type (e.g., declarative, singing). Consistent with
previous validations, we find overall high agreement between the human and LENA-generated speaker tags for adult speech
in particular, with poorer performance identifying child, overlap, noise, and electronic speech (accuracy range across all
measures: 0–92%). We discuss several clear benefits of using this automated system alongside potential caveats based on
the error patterns we observe, concluding with implications for research using LENA-generated speaker tags.

Keywords LENA system · Talker variability · LENA system reliability

Introduction

Understanding the properties of children’s linguistic input
and how it shapes knowledge acquisition has been of
interest to researchers for many decades (Hart & Ris-
ley, 1995; Taine, 1876; Williams, 1937). While lab-based
experiments provide valuable information about what chil-
dren know using tightly controlled experimental manipula-
tions, information about naturalistic input is also critically
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important for understanding how children learn from their
daily environment. The majority of observational research
on language development has been conducted by collect-
ing video and audio samples of child–caregiver interactions,
alongside painstaking and labor-intensive manual transcrip-
tion by trained researchers (Macwhinney, 2019; Nelson,
1973). The widely used Language ENvironment Analysis
system (LENA, LENA Foundation, Boulder, CO, Green-
wood, Thiemann-Bourque, Walker, Buzhardt, and Gilk-
erson (2011)) revolutionized this process, combining a
lightweight wearable audio recorder with a proprietary algo-
rithm that processes the audio signal. The output of this
algorithm then provides researchers and parents with esti-
mates of a variety of information about the recorded linguis-
tic input, including adult word counts, child vocalization
counts, and conversational turns between the adult and the
child wearing the recorder (i.e., the “target” child).

The LENA system was designed with research, inter-
vention, and clinical settings in mind; its output can
readily provide parents with feedback about the language
their children hear. While a key focus of LENA users

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-019-01265-7&domain=pdf
mailto: fedebul@gmail.com
mailto: elika.bergelson@duke.edu


Behav Res

has been word counts and conversational turns (Gilker-
son et al., 2017), the algorithm also exhaustively classifies
the input into “utterances” across eight different talker
categories: target child, other children, adult males, adult
females, overlapping sounds, noise, electronic sounds, and
silence. The source, quantity, and quality of input play
an important role in language development, and indeed
LENA output has been used to identify the relative pro-
portion of speech to infants coming from speakers of
different genders and ages, as well as from electronics
(Christakis et al., 2009; Richards et al., 2017; Sosa, 2016).

One reason characterizing talkers in the input is
important concerns early speech-sound learning. Indeed,
an early challenge for young learners is identifying their
language’s speech sounds, which requires deducing the
right consonant and vowel categories based on input that
varies across and within talkers, and by phonetic context.
Adding to this challenge, the same speech sound varies
acoustically as a function of distinct vocal characteristics,
alongside variables such as gender, age, topic, or dialect
(Liberman, Coopers, Shankweiler, & Studdert-Kennedy,
1967). Detecting the “invariant” (i.e., relatively stable and
consistent) aspects of the input is an important part of
learning language (Gogate & Hollich, 2010), one that is
inevitably dependent on the amount and type of variability
infants experience. As talker variability has been posited
to be both beneficial (e.g., Rost & Mcmurray, 2009), and
to pose a challenge (e.g., Jusczyk, Pisoni, & Mullennix,
1992; Mullennix, Pisoni, & Martin, 1989) for language
learning, the speaker tags LENA provides are an important
information source for moving theory forward.

However, before confidently using the LENA system’s
automated output to study talkers in children’s input, it is
necessary to establish its talker classification accuracy. That
is, while the opportunity to crunch 1000s of hours of data
in just dozens of hours with little human labor required is
enticing, it is critical to understand the limitations of any
automated approach, both for interpretive validity, and to
help guide speech technology improvement. While many
labs continue to use some method of manual annotation
to look at variables of interest (e.g., Bergelson & Aslin,
2017; Bergelson, Amatuni, Dailey, Koorathota, & Tor,
2018; Soderstrom&Wittebolle, 2013;Weisleder & Fernald,
2013), others use the output from the LENA software as
ground truth (Johnson, Caskey, Rand, Tucker, & Vohr,
2014). Especially since the LENA system has great potential
for facilitating diagnosis and intervention for children at
risk for language delays and deficits, it is imperative to
understand the system’s accuracy and error patterns in order
to properly interpret research using LENA output.

Around LENA’s initial release, Xu, Yapanel, and Gray
(2009) published a LENA Technical Report (LTR-05-2)
testing the software’s accuracy on a test set consisting

of one-hour-long segments from each of 70 test subjects
ranging from 2 to 36 months from the LENA Natural
Language Study (building on results in Xu, Yapanel, Gray,
and Gilkerson (2008)). The hour-long segments were made
up of six 10-min segments identified by an algorithm to
include high levels of speech activity between the target
child and an adult. The test set was analyzed by the LENA
proprietary software, and by trained human transcribers.
Xu, Yapanel, and Gray (2009) compared speaker tags
generated by the LENA software to those generated by
the trained human transcribers across four categories: adult
speech, child speech, television, and other; the system
attained 82, 76, 71, and 76% accuracy, respectively. Overall,
Xu et al. (2009) thus report high levels of agreement
between the LENA proprietary software and trained human
transcribers, noting false negatives for overlapping speech
as the algorithm’s greatest source of error.

In a similar endeavor, but using a different tack, Vandam
and Silbert (2016) compared LENA’s talker-tags with
those generated by 23 trained judges. They obtained day-
long LENA recordings from 26 families with 2.5-year-old
children, and extracted 30 “segments” (LENA’s proxy for
utterances) from three LENA categories of interest: adult
male, adult female, and target child. These segments were
systematically extracted over the course of the day, to avoid
potential skew from oversampled contexts, environments,
or times. All judges tagged each segment (in random order,
i.e., without context) as child, male, female, or other. In this
four-way categorization of LENAs three categories, there
was high agreement between the trained judges and the
LENA software (weighted Fleiss κ = .68). Additionally, the
authors were able to identify two key error patterns in the
LENA-generated tags. First, when a segment was tagged as
“child” by judges but not by the LENA system, the LENA
system generally tagged the segment as “female” rather than
“male”. Second, for segments tagged “female” by judges
but not by the LENA system, the LENA system generally
tagged the segments as male rather than child.

Another study (Lehet, Arjmandi, Dilley, Roy, &Houston,
2018) investigated the LENA system’s accuracy in classify-
ing speech as speech, with particular interest in classifying
adult speech at a fine granularity. They sampled 15 day-
long audio recordings from children aged 7–33 months,
analyzing approximately 30 min of audio sampled through-
out the day from each recording. Each LENA segment was
also coded by trained annotators as male, female, or child
speech. These manual speaker tags were then compared to
LENA-generated speaker tags every 50 ms, revealing 70%
agreement. Follow-up comparisons revealed that the LENA
system was most accurate at classifying human speech
(adult or child) from nonspeech (noise, 76–78% accuracy),
but less accurate at differentiating between adult speech and
speech from children or electronic devices (68% accuracy).
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Taken together, these three studies (along with others,
e.g., Mccauley, Esposito, & Cook, 2011; Soderstrom &
Franz, 2016) provide consistent evidence that LENA’s
proprietary software is fairly accurate at classifying speech
relative to trained human coders, while highlighting a
variety of systematic mistakes. However, the literature to
date leaves three clear gaps that the current work fills.

First, across these previous studies, the annotators heard
decontextualized clips and/or had little familiarity with
the families. This critically differs from the infants’ own
experiences of their day, where activities and interactions
have a coherent context and order, and are set against a
firm basis of experience with particular key caretakers. To
better approximate infants’ experiences, we use manual
annotations created by listening to the entire day in order
(except nap times), by researchers who know individual
families well. This provides a contextual coherence to the
tags, and protects against biases that emerge when listening
to unknown talkers. For instance, someone familiar with a
family may know that there is a toddler in addition to the
target child, and that the grandmother, who is the primary
caretaker, has a relatively deep voice. A naive annotator
or algorithm couldn’t know this information, and thus will
likely make errors in attributing child vocalizations to the
key vs. other child, or will use the (generally reliable) proxy
that deeper voices belong to men rather than women.

Second, all of these previous studies used recordings from
large age ranges (from 2 to 36 months), and either collapsed
across all child categories (target vs. other child, Xu et al.
(2009)) or only investigated accuracy on one of the cate-
gories (target child, Vandam and Silbert (2016)). Across this
developmental period, children go from not producing any
speech, to being active participants in conversation. Under-
standing the LENA system’s accuracy in determining the
source of child speech is critical, given that a primary goal
of the LENA system is to collect information about child
vocalizations and turn-taking to assess and promote lan-
guage development. For example, if the LENA system has
difficulty distinguishing between the target child and other
children in the environment, these types of data can give a
misleading assessment of the target child’s vocal maturity
in settings with more than one child present. This may be
particularly problematic in low-SES settings, where family
size tends to be larger, and caretaking more often involves
multiple children (United States Statistics Division, 2015).

Lastly, while many previous evaluations of the LENA
software focused on portions of recordings with a high
density of speech, the type or content of this speech is not
considered in identifying the speaker. A recent investigation
of the availability of both child directed and adult directed
speech in infants’ input over the first two years of life
(Bergelson et al., 2018) found differences in accuracy in

identifying speaker gender depending on child or adult
directed speech. For child directed speech, the LENA
algorithm misclassified a male speaker as female 10% of
the time, but only misclassified a female speaker as male
4% of the time. Whereas for adult directed speech, a female
speaker was mislabeled as male 34% of the time, while a
male speaker was only mislabeled as female 22% of the
time. These errors likely stem from child directed speech
being characterized by overall higher pitch, making it more
difficult for algorithms to differentiate child directed male
speech from adult directed female speech.

Other aspects of the speech content itself can also poten-
tially impact the algorithm’s accuracy. For example, declar-
ative statements and questions are marked by different
intonational contours, which primarily include changes in
fundamental frequency (Lieberman, 1967). As with child
directed speech, it is therefore reasonable to expect that
utterance type may also impact talker classification by the
LENA software. Indeed, different utterance types have been
proposed to serve different roles for language acquisition.
For instance, words in single-word utterances or at the
beginnings and ends of sentences (edges) have been pro-
posed to scaffold segmentation (Brent & Siskind, 2001;
Johnson, Seidl, & Tyler, 2014), while prosodic patterns of
longer utterances can highlight syntactic boundaries (Nel-
son, Hirsh-Pasek, Jusczyk, & Cassidy, 1989; see Soder-
strom, 2007). Questions, in turn, have particular prosody,
with yes/no questions in particular suggested to support
auxiliary development (Gleitman, Newport, & Gleitman,
1984). Situational contexts like reading and singing also
have particular prosody and content. For instance, singing,
a common caretaking activity with parallels to infant-
directed speech (Trehub, Unyk, & Trainor,1993), may pose
a challenge for automated systems given its wider con-
tour range. Finally, reading has been a particular focus in
early language development, and features a distinctively
wider range of words and grammatical constructions, and
prosody (Debaryshe, 1993; Montag, Jones, & Smith, 2015).
Taken together, understanding how context, and inevitable
variability in utterance type, impact talker classification
is relevant for language development more generally.

Filling these gaps, the current study uses a recently
collected longitudinal corpus, the SEEDLingS corpus
(Bergelson, 2017) to investigate LENA software-generated
talker tags taken from a set of day-long longitudinal audio
recordings of 44 typically developing infants in a North
American city. We restrict the current analyses to segments
where trained researchers identified that a noun was spoken
to the target child, by a person, toy, or electronic device,
and the type of utterance the noun was spoken in. We focus
on instances of concrete nouns, given their high prevalence
in early vocabulary (Braginsky, Yurovsky, Marchman, &
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Frank, 2017).1 Furthermore, unlike previous investigations,
we restrict our analysis to day-long recordings from 6 and
7 months of age, which allows us to investigate the child
tags when the target child is not yet producing words,
making it easier to identify patterns of mistakes in labeling
target or other child utterances. Taken together, this paper
goes beyond previous work by comparing LENA algorithm
speaker tags to those produced by trained researchers highly
familiar with the context and individuals in the recordings,
in a relatively large sample of pre-verbal infants.

Methods

Participants

Participants were 44 infants recruited for a large-scale, year-
long study of word learning. All infants were born full term
(40±3 weeks), had no known vision or hearing problems,
and heard English ≥75% of the time; 75% of the infants’
mothers had a B.A. or higher, and 95% of the infants were
Caucasian. Over the course of the year-long study starting
when infants were 6 months of age, families were recorded
using LENA once a month for an entire day, and video
recorded once a month for an hour. For the purpose of
the current study, only the audio recordings from 6 and
7 months were used, as these were the only portions of
the data where the entire day was manually annotated. See
Bergelson et al. (2018) for a fuller description of the data
and Bergelson (2017) to access the recordings directly.

Procedure

Home recordings and initial data processing

Researchers obtained monthly audio recordings capturing
up to 16 hours of infants’ language input each month.
Parents were given small LENA audio recorders (LENA
Foundation), and infant-sized vests with built-in pockets to
house the LENA recorder. Parents were asked to have their
child wear the vest and the LENA recorder from the time
they woke up until they went to sleep for the night, except
for naps and bath times. Parents were permitted to pause the
recorder, but were asked to minimize these pauses.

Audio recordings were processed by LENA proprietary
software, which segments each file and diarizes it (i.e.,
demarcates the onset and offset of every “utterance” and
assigns it one of the eight talker-tags in its inventory, Xu

1Further details about the generalizability of our noun-centric analysis
is taken up in the Discussion

et al. (2008)).2 The output from the LENA proprietary
software was converted to CLAN format (MacWhinney &
Wagner, 2010). In-house scripts were used to mark long
periods of silence (such as naps) in the raw audio files,
without information from the LENA software. Research
assistants subsequently verified the edges of these long
periods of silence using visual inspection of the waveform.3

Subsequently these files were used for manual language
annotation. Original audio recordings were modally 16 h
(LENA’s maximum capacity). After removing long silences,
the recordings were ∼10 h (mode = 654 min, mean = 603
min, SD = 106.8, range = 385.2–951 min, see Bergelson
et al. (2018)).

Manual annotation

Trained researchers listened to the full day-long recording,
and within each utterance delimited by the LENA software,
annotated each concrete noun said directly to or near the
target child. Specifically, concrete noun tags were placed
within timestamps delimited by the LENA software as
utterances. However, multiple concrete nouns could occur
within a single utterance delimited by LENA, or across
utterance boundaries (in which case they were included in
the timestamp where the majority of the word occurred).
Based on the goals of the broader project, which exam-
ines noun acquisition (Bergelson & Aslin, 2017), trained
researchers tagged easily imageable concrete nouns that
could be visually represented, and included objects such as
body parts (i.e., arm, leg) and foods (i.e., milk, cracker),
but did not include occupations (e.g., teacher), or proper
nouns.4 Concrete nouns produced in the distance (such
as faint background television) were not included. Each
concrete noun instance was labeled alongside its utterance
type, a tag for whether the referent of the noun was present,
and individual talker labels (see Bergelson et al., 2018).
The current analysis focuses primarily on the talker label,
which tagged concrete nouns from any talker (live inter-
locutors and electronics), and on the utterance type, which
labeled the utterance as one of the following: declarative,
imperative, reading, singing, short phrase (i.e., less than
three words with no verb, see Bergelson et al. (2018)).

2N.B. While the LENA technical report (Xu et al., 2009) states
accuracy for the talker tags, as described in text, it does not report
accuracy on the segment identification process, i.e. whether a human
would agree with the utterance boundaries identified by LENA,
regardless of talker.
3Process detailed here: https://bergelsonlab.gitbook.io/project/seedlings-
annotations/audio-processing.
4Further details here: https://bergelsonlab.gitbook.io/project/seedlings-
annotations/annotation-notes-1.

https://bergelsonlab.gitbook.io/project/seedlings-annotations/audio-processing
https://bergelsonlab.gitbook.io/project/seedlings-annotations/audio-processing
https://bergelsonlab.gitbook.io/project/seedlings-annotations/annotation-notes-1
https://bergelsonlab.gitbook.io/project/seedlings-annotations/annotation-notes-1
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Each talker was labeled with a unique identifier
describing that specific talker. For example, mom was
always MOT and maternal grandmother was always GRM,
while other speakers’ three-letter codes indicated whether
they were an adult or child, and male or female. The
same label was used throughout the recordings for recurrent
talkers (e.g., Aunt Sarah might be AFS for a given infant.)
Unique three-letter codes were also used when a word was
spoken by multiple simultaneous talkers (e.g., mom and
dad said “ball” at the same time). Each talker tag was
created and checked by two different RAs initially. It then
underwent a final check by a trained researcher highly
familiar with each family (i.e., who could identify each
individual talker present in the recordings and know, e.g.,
that a given family had two older brothers); this researcher
confirmed the set of talker-tags for each child was accurate
and consistent across recordings each month. The current
dataset thus includes an average of 1,317.80 tags per child
(SD = 620.05, mode = 1,123.28, range = 292–2726) for
which we have both a LENA-generated and manual speaker
tag.

Converting talker annotations to LENA-generated speaker
tags

In order to compare the talker tags produced by trained
research assistants with those produced by the proprietary
LENA software, we reclassified our unique talker-tags to
match those produced by the LENA software: female or
male adult, target or other child, electronic, and overlap.
Utterances labeled as electronic were produced exclusively
by toys or television. The overlap category consisted of
utterances produced by any two sources (e.g., two adults,
a child and singing toy, etc.). Across the main set of
analyses, we do not consider utterances labeled as noise or
silence by the LENA algorithm, as our codes did not reflect
this category. In the penultimate section of the results, we
return to these to identify the types of utterances labeled as
noise or silence by the LENA algorithm.5 Finally, in order
to assess inter-rater reliability for our human annotations,
researchers blind to the existing tags coded 3150 concrete-
noun instances (5% of the entire corpus) using speaker tags
equivalent to those used by LENA: male adult, female adult,
child, electronic or overlap. Reliability was high: accuracy
= 96.56, kappa = 0.93.

5N.B. The LENA algorithm provides ’far’ and ’near’ versions of
all tags except silence for each utterance, LENAs own reported
classification accuracy uses only near-field utterances, and we follow
suit (Xu et al., 2009).

Data analysis

We used R and RStudio (Version 3.4.3; R Core Team,
2017),6 to generate this manuscript, along with all figures
and analyses. All code and data are already available
(https://github.com/fedebul/BulgarelliBergelson Behavioral
ResearchMethod2019).

In order to compare our results to those published in
the original LENA technical report (LTR), we analyze the
results of a series of confusion matrices. First, we analyze
the four higher-level categories (adult, child, electronic,
overlap), as in previous validations (Xu et al., 2009). Next
we compare the LENA algorithm’s performance on specific
subsets of the data. Specifically, we look for cases where
human coders and the LENA speaker tags agree that the
speech segments are one of two categories: adult vs. child
tags, male vs. female adult tags, target child vs. other child
tags, and electronic vs. overlap tags. This allows us to
investigate specific error patterns. For example, for the adult
vs. child comparison we can ask: given agreement that the
speaker is human, how accurate was the LENA algorithm
at correctly identifying whether the speaker was an adult
or child? For the electronic vs. overlap comparison we can
ask: having established that the signal is not clear human
speech, how accurate is the LENA algorithm at identifying
its source? Further, as we only included segments that were
identified by annotators as being spoken by a human, toy
or electronic, we investigate LENA system’s use of the
noise and silence tags. Lastly, for each of these comparisons
we investigate whether the LENA algorithm’s accuracy is
dependent on the type of utterance for each segment, based
on the manual utterance type tags (for which there is no
LENA system equivalent).

In all cases, manual tags are used as the gold standard
against which the LENA-generated tags are assessed. We
report accuracy (% agreement and Cohen’s κ), alongside
recall, precision and F1. Percent agreement reflects overall
accuracy (# of correct tags/# of all tags), while Cohen’s
κ takes into account chance agreement due to randomly
guessing, or always choosing a single response. Recall is
operationalized as the rate of correct predictions divided

6We used bindrcpp (Version 0.2.2; Müller, 2018), broom (Version
0.5.0; Robinson & Hayes, 2018), caret (Version 6.0.80; from JedWing
et al., 2018), childesr (Version 0.1.0; Braginsky, Sanchez, & Yurovsky,
2018), dplyr (Version 0.8.0.1; Wickham, François, Henry, & Müller,
2018), ggplot2 (Version 3.1.0; Wickham, 2016), ggpubr (Version 0.2;
Kassambara, 2018), irr (Version 0.84.1; Gamer, Lemon, & I. F. P. S.,
2019), janitor (Version 1.1.1; Firke, 2018), kableExtra (Version 1.0.1;
Zhu, 2019), knitr (Version 1.21; Xie, 2015), magrittr (Version 1.5;
Bache & Wickham, 2014), papaja (Version 0.1.0.9842; Aust & Barth,
2018), purrr (Version 0.3.2; Henry & Wickham, 2018), and tidyverse
(Version 1.2.1; Wickham, 2017).

https://github.com/fedebul/BulgarelliBergelson_BehavioralResearchMethods2019
https://github.com/fedebul/BulgarelliBergelson_BehavioralResearchMethods2019
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Table 1 Nouns in each category, by tag source

Speaker type Human codes LENA codes

Adult 51,097 39,532

Child 3,022 6,331

Electronic 3,165 2,702

Overlap 699 9,418

Total 57,983 57,983

by the total number of actual instances. Precision is our
measure of correct identification. For example, for checking
accuracy in classifying adult vs. child speech, recall would
be: (# of correct LENA adult tags)/(# of manual adult
tags), while precision would be: (# of correct LENA adult
tags)/(total # of LENA adult tags). Lastly, F1 is a weighted
average of the recall and precision, with 1 reflecting perfect
accuracy.

Results

Table 1 shows the number of utterances in each talker
category as tagged manually and by the LENA software.
Overall, LENA-generated talker tags and the manual talker
tags were moderately correlated, (n = 57983, Kendall’s
τ = 0.35, p <.001).

Classifying LENA-generated vs. human-generated adult,
child, electronic, and overlap tags

We first analyzed accuracy for all of the speaker tags that
were classified as adult, child, electronic or overlap. Across

the four categories, the LENA system’s overall accuracy
was 0.72, Cohen’s κ = 0.28. The confusion matrix results
for these categories can be found in Fig. 1 and Table 2. The
LENA technical report (Xu et al., 2009) reports sensitivity
in classifying each category, which here can be compared
directly to recall from the confusion matrix. In all cases, our
results show lower agreement percentages (by 1–38%) than
the LENA technical report.

Descriptively, when the LENA algorithm misclassified
adult speech, it was most likely to classify it as overlap
(15%). Similarly, when it misclassified child speech, it
was most likely to classify it as overlap (23%) or adult
speech (19%). Electronic speech was most likely to be
misclassified as overlap (28%), and overlap speech was
most likely to be misclassified as adult (29%). From these
results, and consistent with the technical report, we can
draw the preliminary conclusion that the LENA algorithm
is overly sensitive to overlapping sounds, relative to human
annotators.

Despite lower agreement in the current dataset than in the
LTR, we do find a significant (non-parametric) correlation
across the proportion of the LENA system tags for each
human tag category between these data and the percentages
reported in the LTR for the equivalent confusion matrix (i.e.,
Fig. 1), n = 16, Kendall’s τ = 0.74, p < .001.

Finally, we assessed whether accuracy varied as a func-
tion of utterance type. Accuracy was operationalized as
correct (scored “1”) if the LENA-generated tag matched the
human tag and incorrect (scored “0”) if it did not. We then
conducted a logistic regression with accuracy as the depen-
dent variable and utterance type (declarative, imperative,
short phrase, question, reading or singing) as a predictor.

75.09 %

7.86 %

2.23 %

14.81 %

19.32 %

56.65 %

1.06 %

22.96 %
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Fig. 1 Confusion matrix displaying recall for LENA-generated labels compared to human-generated labels. Each column constitutes all of the
instances labeled by human coders as belonging to that category. Each cell displays how LENA software tags were labeled for each human
category, as well the total number of segments in each cell. Darker colors represent a higher proportion of LENA software tags
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Table 2 Recall, precision and F1 for all four categories and
comparison to Lena Technical Report sensitivity estimates

Type Recall Precision F1 LTR report

Adult 0.75 0.97 0.85 0.82

Child 0.57 0.27 0.37 0.76

Electronic 0.46 0.54 0.49 0.71

Overlap 0.38 0.03 0.05 0.76

Utterance type was significant χ2(5, N = 57982) = 987.22
p < .001. As can be seen in Table 3 and Fig. 2 the LENA
software is incorrect nearly half of the time for singing utter-
ances, and most accurate on reading utterances. We return
to these descriptive differences in the discussion.

Classifying adult vs. child tags

The next confusion matrix compared adult and child tags
(excluding other LENA-generated or manual tags). Thus,
this analysis investigates accuracy when both human coders
and the LENA algorithm agree that the speaker is human,
and omit overlap and electronic tags from consideration.
The LENA system achieved 0.90 accuracy, Cohen’s κ =
0.38. Recall for this classification is 0.90, while precision
is 0.98. The F1-weighted score is 0.94. The error patterns
reveal that the LENA system is more likely to misclassify
child speech as adult than adult speech as child, see Fig. 3.
While the accuracy for this classification is quite high, it is
worth noting the large discrepancy between accuracy and κ ,
which takes into account the chance of correctly guessing.

Here too, a logistic regression showed that utterance type
accounted for significant variance in classifying adult and
child speech χ2(5, N = 45014) = 475.36, p < .001. As can
be seen in Table 4 and Fig. 4, the LENA software is least
correct at distinguishing between adult and child speech for
singing utterances, and most correct for declaratives, though
overall accuracy was quite high (80–92%).

Table 3 Number of incorr(ectly) and corr(ectly) classified segments
by utterance type, and percent correct (%corr), collapsing across talker
categories

Utterance type Incorr Corr %Corr

Declarative 7009 21,221 0.75

Imperative 1106 2405 0.68

Short phrase 1745 3049 0.64

Question 2953 8252 0.74

Reading 995 3661 0.79

Singing 2377 3209 0.57
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Fig. 2 Classification accuracy distribution by utterance type across the
four main categories: adult, child, electronic or overlap. The box plot
reflects the median of the means for each infant for each utterance
type. Each point (jittered horizontally) represents one child; diamonds
(unjittered) indicate outliers

Classifying male vs. female adult speech

We next investigated accuracy in labeling talker gender. This
analysis only included tags labeled as male or female
adults by both the LENA algorithm and human coders,
and excluded children, electronics and overlap. The LENA
system classified male and female speech with 0.90
accuracy, Cohen’s κ = 0.70. Recall for this classification
was 0.93, while precision was 0.94. The F1-weighted score
was 0.93. The error patterns reveal that the LENA system
is more likely to misclassify male speech as female speech
than female speech as male speech. Indeed, female speech
constitutes 79% of adult speech in the current data set (see
Fig. 3), a point we return to in the discussion.

Again, a logistic regression found that utterance type
accounted for significant variability in classification accu-
racy, here for male vs. female speech χ2(5, N = 39141) =
105.68 p< .001. While the effect of utterance type was sig-
nificant, as can be seen in Table 4 and Fig. 4, the LENA
software is quite accurate at distinguishing male and female
speech. Given accuracy differences only ranging from 87
to 92%, utterance-type differences here should probably be
interpreted gingerly.

Classifying child speech

Our next analysis examined the LENA algorithm’s target
versus other child tags. Specifically, this analysis investi-
gated tags labeled as children by both the LENA software
and manual annotation. Notably, as the current data set only
included target children at 6 and 7 months of age (well
before word production has begun in even the most pre-
cocious talkers) there are no instances of concrete nouns
tagged as the target child by human annotators. As a result,
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Fig. 3 Confusion matrix displaying proportion correct (i.e., recall) for LENA-generated labels compared to human-generated labels. Each column
constitutes all of the instances labeled by human coders. Each cell displays how the LENA system tags were labeled for each human category, as
well the total number of segments in each cell. Darker colors represent a higher proportion of LENA system tags

this analysis differs from the other confusion matrices, as it
can only evaluate LENA agreement for tags labeled as other
children by humans. As such, 0/410 of the LENA-generated
target child tags were correct, since there were no nouns
produced by the target child in the dataset. The LENA sys-
tem classifies speech from the target child relative to other
children with 0.76 accuracy. Recall for this classification
is 0.76, while precision is 1, because all LENA-generated
“other child” tags were correct. The F1-weighted score is
0.87. See Fig. 3.

A logistic regression investigating whether utterance type
accounts for significant variance again found that it did so,
here for classifying target vs. other child speech χ2(5, N =
1724) = 20.21, p = .001. As can be seen in Table 4
and Fig. 4, the LENA algorithm was least correct at
distinguishing between target and other child speech for
words in short phrases (69%), and most correct for questions
(80%) and singing (80%).

Classifying electronic and overlap categories

Our next analysis investigated classification accuracy for
instances labeled as electronic or overlap by both the LENA
system and human coders. Thus, this analysis addresses the
LENA system’s accuracy at classifying speech coming from
a source other than a single live talker. The LENA algorithm
classifies speech from the electronic category relative to
the overlap category with 0.64 accuracy, Cohen’s κ = 0.19.
Recall for this classification is 0.62, while precision is 0.95.
The F1-weighted score is 0.75, see Fig. 3.

Electronic vs. overlap speech classification accuracy too
was significantly predicted by utterance type in a logistic
regression χ2(5, N = 2683) = 174.93, p < .001. As can
be seen in Table 4 and Fig. 4, LENA-generated tag accuracy
was lowest when distinguishing between electronic and
overlap speech for short phrases, and highest for reading (21
and 71%, respectively).

Table 4 Number of incorr(ectly) and corr(ectly) classified segments by utterance type, and percent correct (%corr), for all two-way comparisons
for all two-way comparisons

Adult vs. child Male vs. female Target vs. other child Electronic vs. overlap

Utterance type Incorr Corr %Corr Incorr Corr %Corr Incorr Corr %Corr Incorr Corr %Corr

Declarative 1933 21136 0.92 2288 18350 0.89 175 654 0.79 112 88 0.44

Imperative 399 2384 0.86 228 2120 0.90 19 51 0.73 36 22 0.38

Short Phrase 592 3024 0.84 346 2338 0.87 139 306 0.69 96 26 0.21

Question 959 8232 0.90 615 7463 0.92 44 180 0.80 27 22 0.45

Reading 368 3656 0.91 391 3246 0.89 5 18 0.78 2 5 0.71

Singing 474 1857 0.80 207 1549 0.88 26 107 0.80 696 1551 0.69
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Fig. 4 Classification accuracy distribution by utterance type. Each point (jittered horizontally) represents one child; diamonds (unjittered) indicate
outliers. N.B. not all participants contributed data to each utterance type for each comparison

Classifying LENA-generated noise and silence tags

All of the analyses thus far have excluded instances that
were classified as noise or silence by the LENA software,
which total 522 instances, i.e., 0.90% of the total data.
As the trained human coders did not use these categories,
we now investigate who was talking when these tags were
used by the LENA algorithm. As can be seen in Table 5,
the majority of the time the LENA algorithm labeled an
utterance as noise or silence it was labeled as an adult
utterance by trained researchers. In their technical report,
Xu et al. (2009) acknowledge that human coders are likely
to be better at identifying human speech in noise, and
therefore excluded any tags labeled as noise from their
analyses. Our results offer convergent support for this
hypothesis, though we note that as only a small portion

Table 5 Human-generated speaker tag for LENA-generated noise and
silence categories

Type Noise Silence

Adult 97 322

Child 1 8

Electronic 24 67

Overlap 2 1

Total 124 398

of data falls in this category (<1%), this seems largely
unproblematic for the LENA system’s speaker-tag validity.

Establishing viability of concrete nouns as a proxy
for all input

Given that the current dataset includes only instances of
concrete nouns, it is worth assessing whether concrete nouns
are a reasonable proxy for language input in the context
of talker classification. We first examined noun prevalence
within the Brent corpus. We find that 5.60% of utterances
in Brent contain a noun (concrete or otherwise) (Brent &
Siskind, 2001; Sanchez et al., 2019), and that nouns repre-
sent 13.40% of word tokens. Convergently, using LENA’s
automated Adult Word Count (AWC) estimates as a proxy
for word tokens in the current dataset, we find that the
concrete nouns we include are ∼3.49% of the total word
tokens. In order to establish whether concrete nouns are
representative of the day-long recordings despite being a
small proportion of the input relative to, e.g. function words,
we conducted a further series of comparisons. First, the
number of concrete nouns we tagged in each recording
as produced by adults was strongly correlated with the
AWC estimates reported by LENA, Pearson’s R(42) = 0.73,
p < .001. Second, the proportion of concrete nouns pro-
duced by female (0.79) vs. male speakers (0.21) were highly
correlated with the overall proportion of words produced by
female (0.71) vs. male (0.29) speakers identified by LENA,
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Pearson’s r(44) = 0.73, p < .001. Third, we find that the
distribution of utterance types are convergent with those
reported by Soderstrom, Blossom, Foyg El, and Morgan
(2008), who used similar utterance-type categories to ana-
lyze speech between mothers and preverbal infants. Finally,
the talker-tags we use from LENA were for full utterances
that included the concrete nouns that the human tags were
based on. Together, this raises our confidence that this
subset of the data is representative of the sample as a whole.

Discussion

In the current work, we investigated the LENA algorithm
speaker tag accuracy in a sample of 44 North-American
infants at 6 and 7 months of age. LENA-generated speaker
tags for all instances of concrete nouns spoken to the infants
were compared to manual speaker tags generated by trained
human annotators well familiar with each family, who
listened to the recordings in chronological order as the day
unfolded. Consistent with previous validations of the LENA
software, we found moderate overall agreement between
the human-generated codes and the LENA-generated codes,
even when limiting our analyses to utterances containing a
specific early-produced part of speech: concrete nouns. To
summarize, accuracy on the four way comparison (adult,
child, electronic, overlap) was reasonably strong (0.72),
while accuracy was quite good for the adult and child
comparison (0.90) and the male and female comparison
(0.90). While overall performance was reasonably strong
for the target vs. other child comparison (0.76), its worth
reiterating that one category (target child) was only used
in error by the software. Finally, accuracy was relatively
less strong for the comparison between electronics and
overlap (0.64), a notably difficult distinction. It’s also
noteworthy that despite moderate accuracy overall, there
was a very large range of accuracies across the different
categories we examined. This merits further investigation
in future validation efforts, and ideally, in further iterations
of language environment analysis algorithms, which may
fruitfully take into account a broader range or larger
contiguous stretches of time within the training data.

Across all four main categories (adult, child, electronic
or overlap), the LENA software was most accurate at
classifying adult speech as adult speech, and was overly
reliant on the overlap category. Indeed, our human ability
to ignore noise is remarkable, and unsurprisingly difficult
for automated analyses: this was clearly acknowledged by
Xu et al. (2009) in the original LENA Technical Report.
Overreliance on the overlap category was also particularly
notable in the electronic vs. overlap comparisons, where
speech coded as electronic by human coders was labeled
as overlap by the LENA software 40% of the time. As

also noted by Xu et al. (2008), differentiating electronic
speech from human speech can be quite challenging,
particularly with improving digital media in recent years.
Speculatively, since the LENA system’s central goal is to
capture human speech, it is possible the system is less
well-tuned or trained to electronic sound detection, which
may also be sparser or less consistent across instances
and recordings. This may in turn lead to overuse of the
“overlap” category, especially since if the child wearing
the recorder is interacting with electronic sounds, they are
likely also generating noise themselves (either vocally, or
in playing with e.g., an iPad). Future research is needed to
understand what factors might impact electronic vs. overlap
errors, e.g., loudness, especially given increasing research
centered on understanding children’s media use, Christakis
et al. (2009).

Throughout the results above, Cohen’s κ values were
often lower than accuracy. This is almost certainly due to the
predominance of certain categories across our comparisons.
For example, as base rates for different speakers and
speaker categories vary, tagging every single utterance as
“adult” would result in >50% accuracy. In contrast, κ

values account for this sort of bias in the underlying data
distribution when assessing performance.

We found lower overall agreement relative to previous
validations of LENA’s proprietary software. One possible
explanation for this is that we used a larger amount of data
than previous validation efforts, and that LENA software’s
accuracy falls off over longer samples, perhaps due to the
wider variability in acoustic environments and situations
such lengthy samples engender. For example, the original
Lena Technical Report (Xu et al., 2008) analyzed one hour
of data from 70 participants, while we analyzed an average
of 10 hours of data, from two separate days, for 44 infants,
resulting in a difference of 70 h vs. ∼880 h. Relatedly, in
the current corpus, the number of speakers ranges from 4 to
22 across participants, which may reduce accuracy by intro-
ducing larger ranges of non-systematic acoustic variability.
While we do not know the number of speakers present in
previous corpora used for LENA system validations, given
the shorter samples used, it was likely fewer than considered
here. The demographic characteristics of our participant
sample also differed from those reported in the Lena Tech-
nical Report (Xu et al., 2009), specifically with respect to
mother’s education, which was more variable in the original
technical report. While we find it unlikely that this would
have a large impact on our results, wider validation efforts
with more representative populations would be an important
and welcome addition to this literature.

Our further classification comparisons revealed more
details about the error patterns made by LENA’s proprietary
software. The algorithm was found to be highly accurate
for classifying adult and child speech, and male and female



Behav Res

speech, though when it did make mistakes it was more
likely to misclassify a child as an adult and female speech
as male speech than the opposite. As it has recently been
demonstrated that the LENA system was more likely to
classify male speakers as female when they were using child
directed speech (Bergelson et al., 2018), it is possible that
these errors patterns reflect register differences used by the
speaker. This may also extend to classifying child speech
as adult speech; as children have been shown to adapt their
speech based on their interlocutors (Syrett & Kawahara,
2014; Tomasello, Farrar, & Dines, 1984), children speaking
to adults may sound more adult-like. While the LENA
system does not currently tag child directed speech vs. adult
directed speech, this would be a fruitful future direction
for algorithmic approaches (cf. Schuster, Pancoast, Ganjoo,
Frank, & Jurafsky, 2014).

In contrast, classification of child speech (target child
vs. other children) was relatively inaccurate, particularly
given the age of the target child (which is information the
LENA system gathers before data processing). Specifically,
the algorithm misclassified 410 tokens of speech produced
by other children as being produced by the target child. By
limiting our sample to just infants at 6 and 7 months of
age, we could be sure that the target children in our sample
were not producing words, much less concrete nouns which
were the focus of the current dataset. Nonetheless, as the
misclassified tokens make up 24% of tokens classified as
children by either human coders or the LENA system in
the current sample, it is important for future research to
be aware of these types of mistakes, particularly when the
age range of participants varies widely and it is likely that
some portion of participants are not yet producing words
and contributing to the conversation. To be fair, the LENA
algorithm seeks to tag all child vocalizations, not just words.
By focusing only on utterances containing words (and not
e.g. babble), we limit our assessment of LENA’s target vs.
other-child tag accuracy to a lexical context, rather than
examining all child vocalizations. Given a large focus on
early vocabulary differences across populations, we felt this
was a worthwhile analysis to include, but acknowledge that
for other research questions, accuracy when considering
the full range of early vocalizations remains important to
establish.

One avenue of improvement in automated analyses
would be a way to take the target child’s vocal maturity
into account more explicitly, or, complementarily, adding
an explicit parameter that incorporates family-provided
information about how many children are in the recordings.
This may be particularly relevant for gathering accurate
information about language input from families with more
children, or in which caretaking responsibilities include
other children (as is particularly the case for low-SES
homes, United States Statistics Division, 2015).

Across all comparisons, we also found that utterance type
significantly predicted accuracy, though ranges in accuracy
were too tight in some cases to merit interpretation. For the
four-way comparison (across adult, child, electronic, and
overlap tags), reading and declarative utterances resulted
in the highest classification accuracy, whereas singing
and short phrases resulted in the lowest classification
accuracy. This pattern was consistent for a subset of
other comparisons, likely because reading and declaratives
capture a similar set of intonational contours across age
and gender. In contrast, singing is intrinsically particularly
dynamic in pitch and contour. Thus, while we did not
find wholly consistent results across utterance types across
comparisons, these results do highlight an explanatory
role for utterance type in classification accuracy. This is
important for researchers to keep in mind, as a benefit of
the LENA software is that it allows for day-long audio
recordings, which are inevitably going to contain variability
in utterance types.

Returning again to our focus on concrete nouns, it
remains in principle possible that this would systematically
reduce accuracy in talker tags. However, the analyses above
suggest that concrete nouns are representative of utterance
type and adult word count distributions more broadly.
Furthermore, given the virtual unavoidability of nouns
in conversational speech, and the prevalence of concrete
nouns in input to infants (Bergelson et al., 2018; Roy,
Frank, DeCamp, Miller, & Roy, 2015), we believe that
a high proportion of speech segments used in previous
validations is also likely to contain concrete nouns. Thus,
one contribution of the present work is that we provide
results at the day-long scale, across a large range of talkers,
in a specific lexical class.

Practical implications

To conclude, we want to first reiterate the difficulty
faced by speech processing software, and the ways the
LENA software has revolutionized the field of language
acquisition. Without LENA, collecting and processing
naturalistic recordings of children’s daily environments
would be impossible for many researchers. Despite the
immense benefits, we have identified some limitations of
the LENA talker tags, which researchers may want to
consider when deciding whether human annotations are
necessary to accurately address their research questions.

For researchers interested in the relative proportions of
speech produced from males or females, or even from adults
and children, the output created by the LENA software
is likely sufficiently accurate without a need to manually
annotate the input.

In contrast, for researchers interested in child vocaliza-
tion counts or conversational turns between caregivers and
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the target child, manually checking target child vocaliza-
tions may be necessary to draw valid conclusions. While
the restricted age range in the current data set does not
allow us to explore whether utterances produced by the
target child are mislabeled as produced by other chil-
dren, it is reasonable to believe that this classification
error is bidirectional, particularly as target children get
older. Future research is needed to continue to understand
this error pattern, and whether it is more likely to occur
in specific contexts (child directed vs. adult directed speech,
reading vs. singing, louder vs. quieter environments, etc.).

The overreliance on the overlap category may be
particularly problematic for researchers interested in the
presence of electronics in the input. Considering a large
proportion of electronic speech in the current dataset was
mistaken for overlap, the proportion of electronic input may
be largely underestimated.

One other limitation of the LENA software generally is
that it does not identify individual speakers, and effectively
collapses across all adult speakers of the same perceived
gender, and all non-target children. As such, researchers
interested in the number of talkers present in the input,
the amount of speech produced by different talkers, or
comparing talker variability between and within families
will need to manually code the input to obtain this type of
information.

Lastly, we want to draw attention to how these results
might impact other automatic measurements produced by
LENA, such as adult word counts and child vocalization
counts. As we found that the LENA software was quite
accurate at identifying adult relative to child speech, overall
adult word counts estimates reported by LENA are likely to
be largely unaffected by mistakes in classification accuracy.
As noted above, we did not include any child vocalizations
which were not concrete nouns, and thus we cannot
speak to the accuracy of the LENA system identifying
child vocalizations broadly construed. However, the errors
found here for identifying target child speech suggest that
child vocalization counts may be inflated, particularly for
younger children.

Taken together, the analyses presented in the current
manuscript reiterate the moderate reliability of the LENA
software, while also highlighting patterns of mistakes that
researchers should keep in mind as they use the LENA
system to collect naturalistic day-long recordings. Knowing
about the types of systematic errors the software is likely to
make allows researchers to focus their efforts on manually
annotating variables of interest, while trusting the software
to automate the rest of the process. Despite these error
patterns, we maintain that the LENA system has more
advantages than drawbacks, and remains a revolutionary
data collection tool.
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