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a b s t r a c t 

Automatic word count estimation (WCE) from audio recordings can be used to quantify the amount of verbal 

communication in a recording environment. One key application of WCE is to measure language input heard 

by infants and toddlers in their natural environments, as captured by daylong recordings from microphones 

worn by the infants. Although WCE is nearly trivial for high-quality signals in high-resource languages, daylong 

recordings are substantially more challenging due to the unconstrained acoustic environments and the presence of 

near- and far-field speech. Moreover, many use cases of interest involve languages for which reliable ASR systems 

or even well-defined lexicons are not available. A good WCE system should also perform similarly for low- and 

high-resource languages in order to enable unbiased comparisons across different cultures and environments. 

Unfortunately, the current state-of-the-art solution, the LENA system, is based on proprietary software and has 

only been optimized for American English, limiting its applicability. In this paper, we build on existing work 

on WCE and present the steps we have taken towards a freely available system for WCE that can be adapted to 

different languages or dialects with a limited amount of orthographically transcribed speech data. Our system 

is based on language-independent syllabification of speech, followed by a language-dependent mapping from 

syllable counts (and a number of other acoustic features) to the corresponding word count estimates. We evaluate 

our system on samples from daylong infant recordings from six different corpora consisting of several languages 

and socioeconomic environments, all manually annotated with the same protocol to allow direct comparison. 

We compare a number of alternative techniques for the two key components in our system: speech activity 

detection and automatic syllabification of speech. As a result, we show that our system can reach relatively 

consistent WCE accuracy across multiple corpora and languages (with some limitations). In addition, the system 

outperforms LENA on three of the four corpora consisting of different varieties of English. We also demonstrate 

how an automatic neural network-based syllabifier, when trained on multiple languages, generalizes well to novel 

languages beyond the training data, outperforming two previously proposed unsupervised syllabifiers as a feature 

extractor for WCE. 
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. Introduction 

Automatic word count estimation (WCE) from audio recordings can

e used to investigate vocal activity and social interaction as a function
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ool in the scientific study of child language acquisition because it can
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aily lives in different contexts (e.g., Bergelson et al., 2018a ), and how

he language input maps to later developmental outcomes in the same

hildren ( Weisleder and Fernald, 2013; Ramírez-Esparza et al., 2014 ).

n the present work, we focus on the latter application. 

It is already known that there are substantial differences in language

xposure between families, socioeconomic environments, and cultures,

ith potential impact on later language development outcomes ( Hart

nd Risley, 1995; Huttenlocher et al., 2010; Rowe, 2012; Weisleder and

ernald, 2013 ; see also Hoff, 2006 , for a review). Such differences may

elate to the quantity and kind of speech children hear, but also to ques-

ions such as how often the infant is addressed directly, and how often

hey overhear adult conversations (e.g., Lieven, 1994; Shneidman and

oldin-Meadow, 2012; Cristia et al., 2017 ). However, many of these

onclusions have been drawn from short observations of child-caregiver

nteraction recorded in a lab or at the child’s home, providing only a lim-

ted view into the daily variation children encounter in their linguistic

nput ( Tamis-LeMonda et al., 2017; Bergelson et al., 2018b ). Further-

ore, the vast majority of this research has been carried out in the

ontext of limited set of languages and cultural environments, largely

ocusing on so-called WEIRD communities (Western, Educated, Indus-

rialized, Rich, Democratic; Henrich et al., 2010 ) which limits the gen-

ralizability of the findings. To better study the input and its effects

n development, and in response to changing technological availabil-

ty, language development researchers have increasingly been recording

hildren as they go about their daily lives with wearable microphones,

llowing quantification of language input from data corresponding to

he natural learning environments of the children. However, since it

s not realistic to manually annotate hundreds or even thousands of

ours of audio data from such daylong recordings, automated speech

rocessing solutions are needed. This is where automatic WCE systems

an come to the rescue, as they can provide an invaluable automated

ool for measuring the number of words children have heard in a period

f time. 

The existing state-of-the-art solution for the daylong recording

nd analysis task is the LENA 

TM system ( Xu et al., 2008; Gilkerson

nd Richards, 2009 ) developed by the LENA Research Foundation

 http://www.lena.org ). The LENA setup includes a compact recorder

hat can be placed inside the pocket of a vest worn by the child, and

oftware that analyzes various aspects of the child’s daily language expe-

ience from the audio, including measures such as conversational turns,

dult word counts, and counts of child vocalizations. Despite its tremen-

ous value for the language research community, LENA as a software

olution is not without problems. First, the software is proprietary and

xpensive. Second, only audio captured with the LENA recorder can be

nalyzed with the software, i.e. other audio files cannot be run through

he same software. In addition, the included algorithms for speech pro-

essing are potentially outdated due to aging of the system, the ba-

ic building blocks having been introduced nearly 10 years ago (e.g.,

u et al., 2008 ). Since the algorithms are not open-source, it is also not

ossible to improve the software. Finally, LENA speech processing algo-

ithms, including the WCE module, have been optimized for American

nglish. While the system can be used with recordings in any language,

ts accuracy is not necessarily consistent across different populations,

omplicating any attempt at cross-linguistic comparison. 

Given this background, there is an increasing demand from the re-

earch community to develop an alternative to LENA that would be open

ource, free of charge, compatible with audio data obtained using a va-

iety of recorders, and robustly applicable to a variety of languages and

anguage environments. In order to address this challenge, our ongoing

ollaborative project called Analyzing Child Language Experiences Around

he World (ACLEW; https://sites.google.com/view/aclewdid/home )

ims to develop an open-source software package that would address

he mentioned shortcomings of LENA (see Le Franc et al., 2018 , for ini-

ial work). The developed tools will be distributed as a Linux virtual ma-

hine that can be operated on a variety of computing platforms without

pecial technical expertise in installing or operating speech processing
64 
lgorithms (see Metze et al., 2013; Plummer et al., 2014 ). The system

lso aims to be scalable to large data sets with modest computational

esources, as the aim is to make the tools usable by a broad population

f researchers using a variety of computing environments. WCE is one

mong several tools under development that we hope to integrate into

he software package. 

In the present paper, we describe our recent developments for

he WCE component of the daylong analysis toolkit. After describing

he WCE problem in more detail (the next subsection), we present

ur basic WCE pipeline. In a nutshell, our solution is based on

anguage-independent syllabification of speech, followed by a language-

ependent mapping from syllable counts (and a number of other acous-

ic features) to the corresponding word count estimates. Our work

xtends the earlier WCE system by Ziaei et al. (2016) and also ear-

ier syllable-based speech rate estimators such as those by Wang and

arayanan (2007) and Morgan and Fosler-Lussier (1998) . However,

e go beyond the existing studies by (1) investigating applicability of

yllable-based WCE to daylong child-centered recordings in several lan-

uages and in participant samples with varied socioeconomic status, and

2) comparing the impact of several speech activity detectors (SADs)

nd syllabifiers on the WCE performance. In addition, we (3) explore

ross-language generalization of a language-independent supervised syl-

abification algorithm, thereby potentially replacing the unsupervised

yllabification algorithms ( Ziaei et al., 2016 ) or acoustic phone models

 Xu et al., 2008 ) used in the earlier WCE systems. The ultimate aim of

his study is to identify the best performing WCE system configuration

hat generalizes well to new languages and domains, and to see how it

ompares against LENA performance. 

.1. The WCE problem 

The key idea of a WCE system is to infer the number of spoken words

n a given audio signal segment. Ideally the word count estimates would

lready be accurate at the level of individual utterances. However, due

o the extremely challenging signal conditions encountered in typical

aylong recordings, this turns out to be a difficult problem in practice.

ecause the recording device (e.g., the LENA recorder) is worn by the

hild and records continuously, the microphone picks up not only speech

f the child and caregivers, but also any other audible sounds in the envi-

onment. These sounds can include varying ambient noises, overlapping

peech, and non-linguistic vocalizations. Moreover, each sound source

including speech of interest) has different channel characteristics due

o the varying geometries of the spaces and source positions. In addi-

ion, signal artefacts from clothing scratching against the microphone

uring child movement are also common. A large proportion of the col-

ected data is also mono (e.g., all LENA output), removing any useful

irectional information that could help in source separation. Finally, re-

earchers are increasingly collecting daylong recordings with a variety

f non-LENA recorders, which means the technical characteristics of the

evices can also differ from one dataset to the next. This means that the

verall properties of the audio data are largely uncontrolled, calling for

obust signal processing methods. 

Another central challenge comes from the cross-domain applicability

f the WCE system: performance of the system should ideally be similar

n high-resource languages such as English (across all its dialects and

ocial environments of the talkers) and in low-resource languages, such

s Tseltal, a Mayan language included in our experiments. In conjunc-

ion with the problematic signal conditions, this limits the applicability

f standard ASR systems for WCE in cross-linguistic developmental re-

earch. Balancing the performance of language-specific ASR systems for

he different language environments is not trivial, especially considering

he challenges involved in obtaining sufficiently representative lexicons,

ronunciation dictionaries, and language models for low-resource lan-

uages. 

Fortunately, the use of WCE for developmental research may not

equire systems to identify individual words from the speech stream,

http://www.lena.org
https://www.sites.google.com/view/aclewdid/home
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Table 1 

A list of LENA word count estimation accuracies reported in the literature, as measured between LENA output and manually annotated word counts. N denotes the 

total number of samples used in performance calculation and “segment duration ” refers to the duration of audio in each sample (there can be one or more samples 

per subject). All reported mean (ERR mean ) and median (ERR median ) absolute relative errors across subjects have been derived by the present authors from the word 

count data reported in the publications, or from data obtained from the original authors of the studies through personal communication. See also Section 4.1 for 

details on use of Eqs. (1) and (2) . 

Authors Language r ERR mean ERR median N Segment duration Other notes 

Xu et al. (2009) American English 0.92 N/A N/A 70 1 h Data sampling not specified, 

but most likely the same 1 h 

segments with high speech 

activity as in Xu et al. (2008) . 

Soderstrom and 

Wittebolle (2013) 

Canadian English 0.76 34.1% 27.7% 10 100 min 

Canault et al. (2016) French 0.64 177.0% 36.5% 324 10 min Hand-picked segments with 

high vocal interaction 

Canault et al. (2016) French 0.37 31.2% 27.5% 18 3 h Same as above with data 

pooled across 18 subsequent 

sessions across several days. 

Weisleder and 

Fernald (2013) 

Mexican Spanish 0.80 45.2% 50.2% 10 1 h 

Schwarz et al. (2017) Swedish 0.67 78.4% 59.5% 48 5 min Only 4 subjects. 

Schwarz et al. (2017) Swedish 0.86 42.8% 37.0% 4 1 h Only 4 subjects. 

Elo (2016) Finnish 0.99 75.2% 55.3% 21 1 h Only 2 subjects. 

Gilkerson et al. (2015) Shanghai and 

Mandarin Chinese 

0.73 N/A N/A 22 15 min 

Busch et al. (2018) Dutch 0.88 496.6% 42.9% 65 5 min Derived from 65 × 5 min 

samples provided by Busch 

instead of the 48 samples in 

the original study. 

Busch et al. (2018) Dutch 0.92 32.7% 34.2% 6 54 min Above data, but pooled across 

all 5 min segments per subject 

(4–16 segments, 54 min 

average total duration). 
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nabling alternative technological solutions. A typical use case may be

oncerned with questions such as “How many words did this child hear

er day ? ” (e.g., Weisleder and Fernald, 2013 ) or “How many words does

he child hear at day care versus at home? ” (e.g., Soderstrom and Witte-

olle, 2013 ), and where such aggregate word counts are then related

o other variables of interest. This means that the relevant time-scales

re often measured in terms of several minutes, if not hours or days,

nstead of individual utterances or words. This enables the use of statis-

ical approaches to WCE where estimates of aggregate word counts can

e derived from features or representations of the signal that, on aver-

ge , depend on the number of words in the data. For instance, the LENA

CE module first detects the total number of vowels and consonants in

he signal using an acoustic phone model, and combines these with mea-

ured speech duration with and without silences ( Xu et al., 2008 ). These

eatures (and their square roots) are then mapped to the expected corre-

ponding word count using a least-squares linear mapping that has also

een optimized on American English. Another WCE system recently pro-

osed by Ziaei et al. (2016) takes a similar approach. However, instead

f phone counts their system uses syllable counts from an unsupervised

yllabifier by Wang and Narayanan (2007) as the primary feature. 

In both the phone and syllable-based WCE systems above, the key

ssumption is that speakers of the given language share a lexicon that

s stationary in terms of average phonemic or syllabic length of words

t the time-scales of interest. Even though a system might not get the

stimated word count right for individual utterances (since it does not

dentify individual word forms as such), the estimation error will con-

erge to zero over time as long as the estimator is unbiased, i.e., as long

s the system does not systematically under- or overestimate the word

ounts at the utterance-level. In this context, short-term accuracy of the

stimator will simply determine the rate at which the estimation er-

or decreases when more speech is observed. Given unbiased estimators

ith a sufficient accuracy, a WCE system may therefore provide useful

ord count estimates at the time-scales of interest, even if it does not

now the lexical or phonological properties of the language in detail.

his is also a property that we utilize in our present system, as will be
escribed in Section 2 . t  

65 
.2. State-of-the-art, open issues, and the present contributions 

So far, there are essentially two systems for WCE that have

een proposed in the earlier literature, LENA and the system by

iaei et al. (2016) , both already mentioned above. While LENA is specif-

cally designed for analyzing child-centered daylong recordings (includ-

ng a WCE module for measuring speech heard by the infant), the sys-

em by Ziaei et al. was designed to only count the words of the person

earing the microphone. Their best performing system variant uses TO-

ombo-SAD ( Sadjadi and Hansen, 2013; Ziaei et al., 2014 ) for speech

etection, spectral subtraction for speech enhancement, and an auto-

atic syllabifier from Wang and Narayanan (2007) for syllable count

stimation before mapping the counts to word counts. Ziaei et al. evalu-

ted their system on Prof-Life-Log database consisting of 13 recordings

rom one adult participant wearing the LENA microphone during typi-

al working days, with the data manually transcribed for word counts

 Ziaei et al., 2016 ; see also Ziaei et al., 2013, 2014 ). According to our

nowledge, applicability of their system to child-centered daylong data

as not been tested to date. However, our experiments will partially

ddress this issue by having one of our WCE system configurations be-

ng highly similar to theirs (i.e., using TO-Combo-SAD, spectral subtrac-

ion, the same syllabifier, and a linear model between signal features

nd words). Also, our system generally builds on that work, but as we

how in the experiments, we also introduce more robust techniques for

utomatic syllabification of speech in daylong recording conditions. 

As for LENA, the key components on the adult WCE pathway in-

lude detection of adult speech segments with a hidden-Markov model

hat uses so-called Minimum Duration Gaussian Mixture Models, ap-

lication of a phone recognizer to the segments, and a linear mapping

f the resulting vowel and consonant counts and speech duration mea-

ures to word counts as described in the previous subsection ( Xu et al.,

008 ). Since the introduction of LENA, several studies have evaluated

ENA WCE performance across a number of languages and participant

opulations (see Table 1 ). The major technical drawback of LENA is its

eliance on the structure of American English phonology and lexicon in

he WCE process. As LENA uses an acoustic phone model trained on En-
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lish and a linear mapping from vowel and consonant counts to words,

lso optimized on English, the estimated word counts can be expected

o be accurate only for languages that have the same ratio of vowels

nd consonants to words as the American English used in the train-

ng. In the reported literature, this problem is often masked by the use

f Pearson’s linear correlation between estimated and hand-annotated

ords as the primary performance metric to measure LENA reliability

e.g., Weisleder and Fernald, 2013; Soderstrom and Wittebolle, 2013;

anault et al., 2016; Gilkerson et al., 2015; Elo, 2016; Schwartz et al.,

017 ). Longer stretches of speech in any language also mean more words

nd subword units, so relatively high correlations between LENA out-

ut and manually annotated reference word counts have been reported

n the literature for a variety of languages, as summarized in Table 1 .

owever, the picture is very different when comparing the estimated

ounts N hypo and true counts N true with a measure that also consid-

rs the absolute counts, such as the mean absolute relative error used

y Ziaei et al. (2016) in Eq. (1) or median absolute relative error in

q. (2) used in the present study (more on evaluation in Section 4.1 ). 

𝑅 𝑅 mean ( % ) = mean 
⎛ 
⎜ 
⎜ 
⎝ 

|||𝑁 hypo − 𝑁 true 
|||

𝑁 true 

⎞ 
⎟ 
⎟ 
⎠ 
∗ 100 (1)

𝑅 𝑅 median ( % ) = median 
⎛ 
⎜ 
⎜ 
⎝ 

|||𝑁 hypo − 𝑁 true 
|||

𝑁 true 

⎞ 
⎟ 
⎟ 
⎠ 
∗ 100 (2)

As an example, Elo (2016) reports a correlation of r = 0.99 between

ENA and hand-coded word counts for several 1-hour segments from

wo Finnish children. At the same time, the estimated and actual word

ounts differ by 75.2%, most likely due to the highly different phonolog-

cal and morphological structure of Finnish compared to English. This is

ot to say that LENA would not be applicable to languages different from

nglish: a high correlation means that the relative word counts within

he study population are still accurately measured, allowing word counts

o be linked to other factors (e.g., developmental outcomes) with high

alidity. However, comparison of word counts across different partici-

ant populations is more problematic since LENA adult word counts are

ot guaranteed to correspond to actual words in a new language or in a

ubstantially different dialect. 1 

In the present paper, we aim to remedy the problem of language-

pecificity by proposing a system that is always adapted to the target

anguage using a small amount of orthographically transcribed speech.

ince nearly all behavioral studies using LENA have checked the valid-

ty of the automated analyses in a given domain by comparing auto-

ated system outputs to manual annotations on a subset of the data

e.g., Soderstrom and Wittebolle, 2013; Weisleder and Fernald, 2013;

anault et al., 2016; Elo, 2016 ), the data transcribed for validity could

lso be used to adapt the WCE system to the domain in question (and

ne can still estimate validity by a cross-fold validation procedure on

he same data). By implementing this type of low-resource adaptability,

e aim for our system to be applicable to any language or use domain so

ong as the user is able to provide orthographic transcripts for roughly

0 min of audible adult speech (not to be confused with the total dura-

ion of annotated audio), ideally consisting of multiple different talkers

nd families. To validate our approach, we conduct experiments on six

ifferent corpora and use performance metrics that take into account the

bsolute accuracy of the estimator instead of measuring linear correla-

ions. The overall purpose is to understand whether the adaptation ap-

roach is feasible with the amount of orthographically transcribed data
1 In practice, measuring linguistic exposure across different languages using 

bsolute word counts is also problematic due to the large differences between 

anguages at various levels of linguistic structure (see, e.g., Allen and Dench, 

015, for a discussion). However, this discussion is beyond the scope of the 

resent study, where we simply aim to achieve similarly reliable WCE across 

anguages. 

h  
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66 
hat are manageable for language researchers to produce, and which

echnical components (SADs, syllabifiers) provide the best performance

n WCE when overall accuracy and consistency across datasets are used

s the primary criteria. 

The rest of the paper is organized as follows: Section 2 introduces

he proposed WCE system and its sub-components. Section 3 describes

he data used in system training and in the experiments. Section 4 shows

he results, and Section 5 discusses implications of the current work and

ow the system could (and should) be improved further in future work.

. Methods 

.1. Overall WCE pipeline 

A schematic view of the WCE pipeline, 2 largely based on the earlier

ork by Ziaei et al. (2016) , is shown in Fig. 1 . The system consists of five

asic components (1) a speech activity detector (SAD), (2) a speech en-

ancement module (spectral subtraction), (3) automatic syllabification

f speech input, (4) extraction of statistical descriptors from enhanced

nd syllabified signal representations, and (5) a linear mapping from

eatures into corresponding word counts. 

The guiding principles in the overall system design are robustness

gainst signal conditions in daylong recordings and adaptability to new

anguages. The use of syllables as the primary feature for WCE is mo-

ivated by two primary reasons: First, signal-driven syllabification of

peech can be viewed as a relatively language-independent process. This

s due to an assumption that holds similarly across languages that syl-

abic nuclei are perceptually more “sonorous ” than a preceding onset

nd (optionally) following coda ( Whitney, 1874 ; de Saussure, 1916;

lements, 1990 ), where sonority is closely correlated with physical sig-

al properties such as intensity or loudness (e.g., Price, 1980; Parker,

002 ; see also Räsänen et al., 2018 , for an overview). Any syllabification

rocess that operationalizes these sonority fluctuations as generic com-

utational transformations operating on the acoustic signal then remains

argely language-independent. The second reason for using syllables is

hat the energetic nature of syllabic nuclei also makes them potentially

obust against signal degradations such as additive noise. As long as the

lternation between the less and more sonorous speech sounds is present

n the signal representation, information on the number of syllables is

lso present. 

Our system’s adaptability to new languages is achieved by having

nly a small number of free parameters that depend on the language

 in question: (a) a syllable detection threshold 𝜃L , (b) feature-specific

oefficients 𝛃L used in the linear mapping (highlighted in red in Fig 1 ),

nd (c) a correction coefficient 𝛼L for limited recall of the used SAD.

iven that a dataset with ∼30 or more minutes of orthographically tran-

cribed adult speech is available as training data, these parameters can

e adapted to the language in question. A simple linear model is suffi-

ient if we can assume that the word and syllable counts increase lin-

arly with the duration of speech input at the time-scales of interest for

CE analysis (see also Xu et al., 2008; Ziaei et al., 2016 ). Parsimony

n such a model also reduces the risk of having substantially different

stimator behavior in different languages and conditions, as it mitigates

he risks of overfitting the system to limited adaptation data or creating

ar more accurate models for high-source languages. Even if it excludes

he potential benefits from more complicated nonlinear dependencies

etween signal descriptors and word counts, the previous WCE systems

ave also found linear model as suitable for the task ( Xu et al., 2008;

iaei et al., 2016 ). 
2 MATLAB implementation of the WCE system (source code + Linux/OSX 

inaries for MATLAB Runtime Environment) are available at 

ttp://www.github.com/ACLEW/WCE_VM/ , and also as integrated to the 

CLEW virtual machine at http://www.github.com/SRVK/DiViMe/ . 

http://www.github.com/ACLEW/WCE_VM/
http://www.github.com/SRVK/DiViMe/
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Fig. 1. Overall schematic view of the core WCE system. Input audio is first passed through a SAD that passes through detected speech segments, followed by speech 

enhancement with spectral subtraction. A syllabification algorithm is then used to calculate a “sonority envelope ” y u for each utterance u , from which syllable counts 

n u are then obtained with peak picking. Utterance duration and a number of statistical descriptors of the enhanced audio and sonority envelope are then combined 

with the estimated syllable count to form a fixed-dimensional feature vector f u . Word count estimate of each utterance is finally obtained by applying a least-squares 

linear mapping to f u . Parameters 𝜃L and 𝛃L shown in red font can be optimized separately for each language L . (For interpretation of the references to color in this 

figure, the reader is referred to the web version of this article.) 
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.2. Processing steps in more detail 

The processing of a (day)long recording starts with the detection

f speech segments using a SAD. 3 In this work, we compare three al-

ernative methods for the task: Threshold-optimized Combo-SAD ( “TO-

ombo-SAD; Sadjadi and Hansen, 2013; Ziaei et al., 2014 ) as used in

iaei et al.’s WCE system (2016), SAD from the widely used OpenS-

ILE toolbox ( Eyben et al., 2013a, 2013b ), and so-called ‘Noisemes’

AD, which is based on recognition of several classes of environmen-

al sounds ( Wang et al., 2016 ), all described in more detail in the next

ubsection. 

All segments classified as speech by the SAD are subsequently pro-

essed by a speech enhancement algorithm. Our system uses spectral

ubtraction ( Berouti et al., 1979 ), which Ziaei et al. (2016) found to be

uperior to several other methods in their comparisons on the Prof-Life-

og WCE experiments. In the present system, spectral subtraction is car-

ied out using the noise power spectral density estimation algorithm by

artin (2001) , as implemented in the VoiceBox toolbox, 4 where noise

stimation is performed directly from the SAD output segments with-

ut having to separately specify non-speech regions. This simplifies the

ipeline, as a SAD may not always reliably differentiate between speech

nd non-speech content (as will be seen in the experiments below). 

In the syllable envelope estimator stage, we compare two un-

upervised syllabifiers: one by Wang and Narayanan (2007) and

ne by Räsänen et al. (2018) . In addition, we investigate a super-

ised neural network-based syllabifier based on an initial concept in

andsiedel et al. (2011) . In all three, the enhanced acoustic waveform

orresponding to a SAD output segment ( “utterance ”) u is transformed

nto a unidimensional signal y u ∈ [0, 1] at a 100-Hz sampling rate. Each

ample in y represents either “sonority ” of the speech input at that in-

tant (for unsupervised estimators) or pseudo-probability of a syllable

ucleus at the given time (for the supervised estimator). As a result,

ocal peaks in y are assumed to correspond to syllabic nuclei. 

In the feature extraction stage, the number of syllable nuclei n u is first

xtracted from the syllable envelope y u . This is performed using a sim-

le peak-picking algorithm that looks for local maxima with amplitude

ifferences of at least 𝜃 with respect to the previous local minimum.
L 

3 We will refer to voice activity detectors (VADs) and speech activity detectors 

SADs) simply as SADs. 
4 http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html , by Mike 

rooks. 
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he threshold parameter 𝜃L is optimized separately for each language

 (see Section 2.2 ). In addition to n u , the mean and standard deviation

SD) of the sonority envelope across the entire utterance are extracted

s syllabic features s u . The mean and SD of signal power and overall

AD segment duration are also extracted as signal-level energy features

 u . Even though the mean and SD features do not accumulate over time,

nitial experiments suggested that they allow automatic fine-tuning of

redictions based on overall signal dynamics in the utterances. 

In the final stage, all features n u , s u , and e u are concatenated into

n utterance-level feature vector f u , and a linear mapping w u = f u 𝛃L 

o the corresponding word count estimate w u is carried out. Similarly

o 𝜃L , the mapping parameters 𝛃L are separately optimized for each

anguage. 

.3. Adapting the system to new languages 

In order to adapt the system to a new language L , syllable detec-

ion threshold 𝜃L and linear mapping parameters 𝛃L are estimated from

tterances X = [ x 1 , x 2, …, x n ] for which the corresponding word counts

 = [ w 1 , w 2 , …, w n ] are known. The parameters are optimized to mini-

ize WCE RMSE error on the provided training data. This is achieved by

rst performing syllabification of training utterances at various thresh-

ld values 𝜃 ∈ [0.0001, 1] with small increments and measuring the

inear correlation r between the resulting syllable counts and ground-

ruth word counts across all the utterances. The threshold 𝜃L with the

ighest linear correlation is then chosen, and the corresponding sylla-

le counts n u are added to the utterance-level feature vectors F = [ f 1 ,

 2 , …, f n ] 
T along with the other features. Ordinary least squares linear

egression is then carried out to solve 𝛃L from w = F 𝛃L . 

In order to compute word count estimates over longer time-scales

han individual SAD segments, a correction based on the expected recall

f the SAD needs to be taken into account. In the experiments described

n Section 4 , SAD is first used to split the adaptation recordings into

tterance-like chunks u , and then the proportion 𝛼L ∈ [0, 1] of words

nding up in the SAD outputs (see Section 4 for details) with respect

o the total number of words in the adaptation data is measured. All

ggregate word count estimates are then divided by 𝛼L to account for

he limited recall of the SAD. 

.4. Compared speech activity detectors 

Three different SADs were compared in the experiments. The first

wo, TO-Combo-SAD and OpenSMILE SAD, are well established and

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
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v  
ave been previously tested in a variety of contexts. The third one,

oisemes SAD, differs from the other two by attempting to model non-

peech categories in more detail instead of directly attempting binary

lassification between speech and non-speech. 

.4.1. TO-Combo-SAD 

TO-Combo-SAD ( Sadjadi and Hansen, 2013; Ziaei et al., 2014 ) is

ased on five signal features (harmonicity, clarity, prediction gain, pe-

iodicity, and spectral flux) that are linearly mapped into a 1-D rep-

esentation using PCA, and then clustered into two categories using a

-component Gaussian mixture model (GMM) based on the data from

he analyzed segment. In the basic Combo-SAD, the GMM component

ith the higher mean is then considered to be speech and the other

omponent non-speech. The final frame-level decisions are made based

n the component posteriors after weighing them with factor w (and 1-

 ) that is a hyperparameter of the algorithm. In the threshold-optimized

ersion used in this paper, the higher component mean has to be equal

o or higher than the mean of 1–D projections of all mean vectors from a

56-component GMM, where this larger GMM that has been pre-trained

n a large amount of labeled speech data using the same 5-dimensional

eatures. If this condition is not satisfied (i.e., neither cluster resembles

ypical speech), the pre-trained GMM is used as a model of speech in-

tead. As a result, TO-Combo-SAD is capable of handling audio data

ith highly unbalanced distributions of speech and non-speech content,

s demonstrated with Apollo space mission data ( Ziaei et al., 2014 ) and,

n WCE, with the Prof-Life-Log data ( Ziaei et al., 2016 ). In the present ex-

eriments, we use this “threshold-optimized ” ( “TO ”) Combo-SAD with

ts default parameters, as kindly provided by the original authors. 

.4.2. OpenSMILE SAD 

OpenSMILE SAD ( Eyben et al., 2013a, 2013b ) is included as the sec-

nd SAD alternative, since the OpenSMILE toolkit is widely used for

arious speech processing applications and is freely available for non-

ommercial use. The SAD of the toolkit uses a Long Short-Term Memory

LSTM) neural network model with cepstral coefficients computed from

ASTA-PLP ( Hermansky and Morgan, 1994 ) and their first and second

rder derivatives. During use, network outputs ( − 1 for non-speech, 1 for

peech) are thresholded to make a binary speech/non-speech decision

or each frame. In Eyben et al. (2013a) , the network was trained using

merican English speech corpora of conversational (Buckeye; Pitt et al.,

005 ) and read speech (TIMIT; Garofolo et al., 1990 ) and using synthetic

dditive noise for improved noise robustness. However, the public ver-

ion available in the OpenSMILE toolbox uses a more limited training

ataset that is not separately specified (see OpenSMILE documentation).

efault hyperparameters of the tool (OpenSMILE version 2.1.0) were

sed in the experiments. 

.4.3. Noisemes SAD 

Noisemes SAD ( Wang et al., 2016 ) was chosen as the third alter-

ative SAD, since it represents a somewhat different approach to the

peech detection problem than the previous two: It is, in fact, a 17-

lass environmental sound ( “noiseme ”) classifier with two categories for

peech and 15 categories for other sound types, such as music, singing,

heering, and mumbling. Since in WCE we want to distinguish compre-

ensible speech from other vocalizations, this type of multi-class mod-

ling may be beneficial. Technically Noisemes SAD is based on 6669

ow-level signal descriptors extracted using the OpenSMILE toolkit that

ave been compressed to 50-dimensional features using PCA, 5 and fed

nto a one-layer Bidirectional Long Short-Term Memory (BLSTM) net-

ork. The model has been trained on 10 h of web video data from

trassel et al. (2012) . To use it as a SAD in our experiments, posteriors
5 Note that the original method in Wang et al. (2016) used 983 features se- 

ected using information gain criterion, but we used an updated version from 

uthors Wang and Metze in this paper. 
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68 
or “speech ” and “speech non-English ” classes were summed together

nd all frames where this combination class was higher than the other

5 categories were considered to be speech. 

.5. Compared syllabifiers 

The basic idea of tracking sonority fluctuations in speech has given

ise to several automatic syllabification algorithms proposed in the ex-

sting literature. Even though there is variation in the exact framing of

he methods, basing syllable detection on, e.g., amplitude or energy en-

elopes, loudness contours, or other similar 1-D representations derived

rom the signal (e.g., Mermelstein, 1975; Morgan and Fosler-Lussier,

998; Villing et al., 2004; Wang and Narayanan, 2007; Obin et al.,

013 ), nearly all of the methods are ultimately based on tracking of

he approx. 3–8 Hz amplitude modulations in the speech signal that go

and-in-hand with the temporal alternation between vocalic and conso-

antal speech sounds: the syllabic rhythm. 

In the present work, three alternative syllable envelope es-

imators were compared for WCE: (1) thetaSeg algorithm by

äsänen et al. (2018) , originally designed for perceptually motivated

yllable segmentation from speech, (2) syllable envelope-estimator mod-

le from the speech-rate estimator by Wang and Narayanan (2007) ,

nd (3) a bi-directional Long Short-Term Memory (BLSTM)-based

yllabification algorithm based on the initial version described in

andsiedel et al. (2011) . While the first two alternatives (thetaSeg and

N) are unsupervised methods making use of heuristic signal process-

ng operations, the BLSTM is directly trained for nucleus detection in a

upervised manner. All three methods are detailed below. 

.5.1. thetaSeg 

thetaSeg ( Fig. 2 , top; Räsänen et al., 2018 ) is a straightforward mech-

nistic model of oscillatory entrainment of the auditory cortex to rhyth-

ic fluctuations in speech input (approx. 4–7 Hz; so-called “theta-range ”

scillations), approximating the perception of sonority fluctuations in

peech. In thetaSeg, the incoming signal is first fed through a 20-channel

ammatone filterbank with center frequencies logarithmically spaced

etween 50 and 7500 Hz, followed by downsampling of the amplitude

nvelopes to 1000 Hz. The resulting envelopes are then used to drive a

ank of harmonic damped oscillators (2nd order electronic resonators

ith shared parameters), one oscillator for each frequency band. For

ach sample, amplitudes of the eight highest-amplitude oscillators are

ombined non-linearly by calculating the sum of logarithmic amplitudes

f the oscillators. As a result, a time-series called “sonority envelope ” is

btained, where harmonic and high-energy in-phase excitation on mul-

iple frequency bands is reflected as high amplitude values, whereas

ow-energy and/or incoherent excitation will result in smaller values.

he damping and center frequency parameters of the thetaSeg were op-

imized in Räsänen et al. (2018) for maximal syllable segmentation per-

ormance across English, Finnish, and Estonian conversational speech.

he resulting damping factor Q = 0.6 and center frequency cf = 8 Hz are

lso used in the present paper. 

.5.2. WN 

WN ( Wang and Narayanan, 2007 ; Fig. 2 , middle) is an algorithm

riginally developed for speaking rate estimation from conversational

peech, being an improved modification of the mrate-algorithm pro-

osed by Morgan and Fosler-Lussier (1998) . WN is also used by

iaei et al. (2016) in their WCE system. In WN, the signal is first di-

ided into 19 frequency bands, followed by downsampling to 100 Hz,

nd selection of the 12 most energetic sub-bands. For each sub-band,

he envelopes are low-pass filtered with a Gaussian-shaped kernel, fol-

owed by computation of temporal within-band correlations up to lag

f K = 11 frames. The resulting band-specific signals are then combined

hrough multiplication ( ∼cross-band correlation), and smoothed again
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Fig. 2. Block schematics of the syllable envelope estimators compared in the present study. 
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n time using a different Gaussian kernel. As a result, a one-dimensional

onority-like envelope is obtained, in which peaks are assumed to cor-

espond to syllabic nuclei. 

Our experiments used a MATLAB implementation of WN that is de-

cribed in Räsänen et al. (2018) . In that version, the envelope esti-

ation stage is identical to the original one described in Wang and

arayanan (2007) except that a Gammatone filterbank was used in-

tead of the original second-order Butterworth bandpass filters for the

requency analysis. All hyperparameters (number of frequency bands

nd sub-bands, Gaussian kernel sizes etc.) were taken from the origi-

al paper, where they were optimized for the conversational Switch-

oard corpus ( Godfrey et al., 1992 ) using a Monte Carlo optimization

cheme. The original speech rate estimator also uses pitch tracking to

rune out unvoiced nucleus candidates. However, robust F0 estimation

ith a fixed set of hyperparameters was found to be problematic across

he variety of signal conditions encountered in our daylong recordings.

herefore we only used the envelope estimation stage of the WN, and

he envelope was used as an input to the same peak picking algorithm

sed by all three syllabifiers (as described in Section 2.2 ). 

.5.3. BLSTM syllabifier algorithm 

BLSTM syllabifier algorithm ( Fig. 2 , bottom) was developed based on

he initial work by Landsiedel et al. (2011) who tested BLSTM-based syl-

abification on English from TIMIT and Switchboard corpora. However,

nstead of a higher-dimensional set of features used in the original pa-

er, inputs to our model are mean and variance normalized 24-channel

og-Mel spectra (25-ms frames, 10-ms frame shift). We also doubled the

umber of units in hidden layers to support representation learning from

he spectral input. As a result, the network uses two bi-directional layers

ith 60 LSTM cells in each forward and backward layer, and where for-

ard and backward layer LSTM cell activations are combined through

ddition. Sigmoid activation functions are used for each LSTM cell. Af-

er merging the final BLSTM layers, there is a fully-connected sigmoid

ayer with one node that converts the BLSTM activations into syllable

ucleus probabilities, one value for each input frame. 

Training of the BLSTM was carried out using syllable-annotated data

rom several different languages described in Section 3.1 . Target outputs

or network training consist of 1-D time-series that are otherwise zero

xcept for Gaussian-shaped kernels centered on manually annotated syl-

able nuclei. More specifically, for each phone that is also a syllabic nu-

leus, a Gaussian kernel with a maximum value of one is added to the

osition corresponding to the center of the phone. The standard devi-

tion of the Gaussian is set to be the corresponding phone duration,
69 
ivided by 3.5. Any values larger than one, basically due to temporally

verlapping Gaussians, are clipped to have a value of 1. As a result, the

arget signal can be interpreted as a pseudo-probability for the presence

f a syllabic nucleus in each position (see also Landsiedel et al., 2011 ).

he use of Gaussians instead of binary targets accounts for the various

ources of uncertainty in determining the accurate position and dura-

ion of a syllabic nucleus, including coarticulatory effects and annotator

ariability, and even conceptual problems in defining the exact onset

nd offset of a syllabic nucleus. 

In our experiments, we explore four alternative training strategies

or the BLSTMs: (1) clean training without dropout, (2) clean training

ith 50% dropout in the hidden layers, and additive noise and varying

hannel augmented training (3) with and (4) without dropout (50%).

oise and channel augmentation were carried out by creating two addi-

ional copies of each clean training signal. For each copy, additive noise

as added at SNR sampled uniformly and randomly from [ − 10, 40] dB.

he additive noise signals consisted of randomly sampled extracts from

CLEW starter set ( Bergelson et al., 2017a ) consisting of infant daylong

ecordings from various language environments, none of the data drawn

rom the test participants of our experiments. Varying channel charac-

eristics were simulated by convolving the noised speech samples with

IR filters of 20 coefficients ( fs = 16 kHz) randomly sampled from a nor-

al distribution with zero mean and unit variance. The resulting signals

ere scaled to have a maximum amplitude of 1. The motivation for the

ata augmentation was to explore whether this type of approach im-

roves syllabification performance also in case of largely unconstrained

uditory environments present in our recordings, and also how augmen-

ation compares with the effects of dropout training in our application.

. Data 

Two separate sets of data were used in the development and testing

f the WCE pipeline: one set of corpora for training the BLSTM syllab-

fier, and another set of corpora of daylong child recordings for testing

f the WCE system. 

.1. BLSTM syllabifier training data 

The BLSTM syllabifier was trained on data from four corpora that

ave both syllable- and phone-level annotations available: the Pho-

etic Corpus of Estonian Spontaneous Speech ( “EstPhon ”; Lippus et al.,

013 ), the Korean Corpus of Spontaneous Speech ( Yun et al., 2015 ),
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Table 2 

Corpora used in the experiments for WCE evaluation. Audio total = total amount audio annotated for verbal activity; speech total = duration of all 

utterances in the annotated audio; adult speech total = total duration of utterances from male or female adults that contain at least one unambiguously 

transcribed word. Min = minutes. 

ID Corpus name Language Subjects (N) Audio total (h) Speech total (min) Adult speech total (min) Audio per subject (min; avg.) 

BER Bergelson US English 10 5.0 116.7 50.7 30.0 

CAS Casillas Tseltal 10 7.5 212.0 100.8 45.0 

L05 Language 0–5 UK English 10 5.0 95.9 39.1 30.0 

ROS Rosemberg Arg. Spanish 10 5.0 149.3 70.3 30.0 

MCD McDivitt + Can. English 8 4.5 80.9 44.0 33.8 

WAR Warlaumont US English 10 5.0 100.3 39.6 30.0 

Total 58 32.0 755.1 344.5 
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6 Noise power was estimated as the mean power of non-speech frames within a 

5-s window centered around each annotated speech frame (defaulting to average 

signal noise power if no non-speech frames were within that window). Speech 

power was estimated from speech frames by assuming non-coherent additivity 

of speech and the noise estimate for the given frame. 
he Brent corpus of American English infant-directed speech ( Brent and

iskind, 2001 ), and the C-PROM corpus of spoken French ( Avanzi et al.,

010 ). Together these corpora cover four different languages, several

peaking styles, and a range of recording conditions from speakers of

oth genders and across a variety of ages. 

From EstPhon we used the studio section of the corpus, which in-

ludes several spontaneous dialogues with pairs of male and female

alkers, totaling up to 10,158 utterances in high signal quality (5.2 h of

udio). The Korean data consists of dialogues between talkers of various

ges (from teenagers to speakers in their 40 s) and both genders. Since

his corpus is much larger than the other three, we randomly sampled a

ubset of 12,000 utterances (5.0 h) for training. As for C-PROM, we used

he entire corpus consisting of 24 multi-minute recordings of various re-

ional varieties of French from several discourse genres, totaling 1.2 h

f data. Finally, we used the so-called Large-Brent subset of the Brent

orpus forced-aligned for words and phones by Rytting et al. (2010) ,

or which automatic syllabification of the resulting phone transcripts

as carried out using tsylb2-algorithm ( Fisher, 1996 ), as described in

äsänen et al. (2018) . This subset of Brent corresponds to 1.9 h of speech

nd 6253 utterances. After combining all the four corpora, the training

ata consisted of 13.3 h of audio with 265,089 syllables. In data augmen-

ation experiments, this was tripled to 40 h, as described in Section 2.5 .

.2. Evaluation data 

The data for WCE system evaluation comes from six different cor-

ora of child daylong recordings that have been pooled together, sam-

led, and annotated as part of the ACLEW project ( Bergelson et al.,

017b ). These include the Bergelson corpus ( “BER ”) from US English

amilies from New York area ( Bergelson, 2016 ), the LuCiD Language 0–

 corpus ( “L05 ”) consisting of English-speaking families from Northwest

ngland ( Rowland et al., 2018 ), the Casillas corpus ( “CAS ”) of Tseltal-

peaking families from a rural Mayan community in Southern Mexico

 Casillas et al., 2017 ), the McDivitt and Winnipeg corpora (so-called

cDivitt + ; here “MCD ”) of Canadian English families ( McDivitt and

oderstrom, 2016 ), the Warlaumont corpus ( “WAR ”) of US English

rom Merced, California ( Warlaumont et al., 2016 ), and the Rosem-

erg corpus ( “ROS ”) of Argentinian Spanish families from Buenos Aires

etropolitan area ( Rosemberg et al., 2015 ). Some recordings in BER,

nd all recordings in CAS, MCD, and WAR are available from Home-

ank repository ( VanDam et al., 2016 ). 

Key properties of these corpora are summarized in Table 2 . Each

orpus consists of daylong (4–16 h) at-home recordings; each corpus

amples from a unique community, with language varying across cor-

ora and socioeconomic environment varying both within and across

orpora. In each recording, the target child ( “participant ”) wears a mo-

ile recorder in a special vest throughout a normal day. BER, MCD,

05, and WAR recordings were collected with the LENA recorder, while

AS was recorded with Olympus WS-382 or WS-852, and ROS was

ecorded with a mix of Olympus, Panasonic, Sony, and LENA recorders.

ll the recorders have high-quality microphones on speech frequency

and. All data were recorded at a 16-kHz sampling rate or higher
70 
t 16 bits, and converted to .mp3 for cloud storage on Databrary

 https://nyu.databrary.org/ ). All data were resampled to 16 kHz before

urther processing. Due to the unconstrained nature of the recordings,

hey contain both near- and far-field speech in various ambient envi-

onments and at highly varying SNRs. The approximate 6 average speech

NRs for different corpora are BER 2.1 dB, CAS –0.5 dB, L05 3.6 dB, ROS

2.6 dB, MCD 0.8 dB, and WAR 2.4 dB. 

Out of the 220 of recorded participants, daylong recordings from 10

nfants from each corpus were chosen for manual annotation, selected

o represent a diversity of ages (0–36 months) and socio-economic con-

exts. From those daylong files, fifteen 2-minute non-overlapping seg-

ents were randomly sampled from the entire daylong timeline for

anual annotation, corresponding to approximately 10 min of anno-

ated speech per subject. The only exception to this is the CAS corpus,

hich consists of nine randomly sampled 5-min segments for each of the

0 children. It also contains 50% more annotated audio than the others,

ince all of its annotations were carried out before determining the final

ampling protocol for the rest of the corpora. One MCD subject from a

rench-speaking family was excluded from the experiments, as the other

ubjects were from English-speaking families. Due to a sampling error,

ne of the remaining participants was sampled twice. 

All sampled 2- and 5-min segments were annotated for all hear-

ble utterance boundaries, speaker ID, addressee information (child

s. adult-directed speech), and vocal maturity of child vocalizations

canonical/non-canonical babbling, single-, or multiword utterances),

nd all adult speech was transcribed. All annotations followed a shared

nnotation protocol developed in the ACLEW project for the present type

f daylong data ( Casillas et al., 2017a, 2017b ). Each corpus was anno-

ated by (or with) someone proficient in the language in question. To

nsure standardization in annotation, all annotators passed a test against

 (separate) reference gold standard annotation before annotating the

ata here. Annotators were trained to transcribe speech corresponding

o what was actually said instead of the canonical lexical forms (e.g.,

 wanna ’, not ‘ want to ’). 

For the WCE experiments, reference word counts were extracted

rom the orthographic transcripts of the utterances. First, all non-lexical

ranscript entries such as markers for incomprehensible speech, non-

inguistic communicative sounds, and all paralinguistic markers were

iscarded. In addition, for ready comparison to LENA, all transcribed

ords from non-adult speakers were discarded, even though the present

CE pipeline does not yet have a mechanism for separating speaker

dentities. As a result, only unambiguously transcribed word forms from

dult talkers remain in the final gold standard dataset here. Every re-

aining orthographic entry separated by a whitespace was then consid-

red as a word for adapting and testing of the WCE system. 

https://www.nyu.databrary.org/
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7 Performance improved slightly on BER and MCD whereas it got worse on 

L05 and WAR. The average effect of linear scaling across the four corpora was 

0.34% absolute decrease in median absolute relative error rate. 
. Experiments and results 

.1. Experimental setup and evaluation 

The purpose of the experiments was to evaluate our WCE pipeline

cross the different corpora, and to compare the alternative syllabifi-

ation and SAD algorithms described in Section 2 . Leave-one-subject-

ut (LOSO) validation was used to perform WCE on the data described

n Section 3.2 , always adapting the WCE system on all but one of the

ubjects, and then testing WCE performance on the held out subject.

daptation and testing were carried out separately for each of the six

orpora. 

In addition to the three SADs (TO-Combo-SAD, OpenSMILE,

oisemes), we evaluated WCE performance with an ideal segmenta-

ion based on the utterance boundaries extracted from manual anno-

ation. We also included a baseline “fixed-frame ” segmentation condi-

ion where the audio signals were simply divided into fixed 5-s non-

verlapping windows without any knowledge of the underlying signal

ontents, thereby passing all speech and non-speech audio content to

he syllabification stage. For all these conditions, the six syllabifiers

thetaSeg, WN, and the four BLSTM variants) were compared against

ach other. In addition, a baseline system using only speech duration as

he feature for least-squares linear regression was included. 

In order to perform WCE adaptation, SAD was always first applied to

he training data. Since the orthographic transcripts were aligned at the

tterance (but not the word) level, the following procedure was used

o assign transcribed words to SAD output segments: First, transcribed

ords of an utterance were assumed to be uniformly spaced across the

ntire duration of the utterance, where word duration was assumed to

e directly proportional to the number of characters in the word. All

ranscribed words overlapping with the given SAD output segment were

hen assigned to it. Finally, all SAD segments x u with their corresponding

umber of words w u were considered as inputs to the optimization of the

inear mapping. Correction factor for SAD recall was measured on the

raining data by dividing the number of words assigned to SAD outputs

y the total number of words in the training data. 

During testing, the time-scale of interest was all the audio data from

he given subject s , corresponding to 30–45 min of total audio and ap-

roximately 4–10 min of adult speech per subject ( Table 2 ). Estimated

ord counts from all SAD segments of a test subject were summed to-

ether to obtain N s ,est and compared against the corresponding total

umber of annotated words N s ,true in order to derive subject-level devi-

tion ERR s (%) between true and estimated word counts: 

R R 𝑠 = 

||𝑁 𝑠, est − 𝑁 𝑠, true ||
𝑁 𝑠, true 

∗ 100 (3)

However, one challenge in this type of evaluation is that not all sam-

les in our corpora necessarily contain adult speech ( N s ,true = 0). One op-

ion is to simply ignore these samples, but that would bias the evaluation

owards “easier ” cases where a larger proportion of the signal timeline is

overed by target speech (a problem that would also apply for weighted

verages based on the reference counts). Another option —the one we

dopted here —is to replace zeros with ones in the denominator in order

o get a finite measure for each sample. In addition, we observed that

he error distribution across subjects tends to be non-Gaussian with typ-

cally one or two outliers in nearly all corpora, thereby also increasing

he mean of errors substantially above of the values typical to the over-

ll pool of subjects (see also Table 1 ). As a practical compromise, we

dopt the use of ERR median in Eq. (2) as the primary performance metric

cross all the subjects in a corpus, as it takes data from all subjects into

ccount without assuming normality of the error distribution. 

As for benchmarking against LENA, the English corpora BER, L05,

CD, and WAR were fully collected with LENA, and therefore LENA

utomated analysis outputs were available for comparison. Since LENA

utput consists of estimated adult word counts per each automati-

ally detected conversational turn, these conversational turns had to
71 
e aligned with the 2-min segments sampled for manual annotation.

n practice, if x % of a LENA conversational turn overlapped with a seg-

ent, x % of the LENA word counts from that turn were added to the

otal LENA word count estimate for that segment. Note that the pro-

ortion of partially overlapping turns is only 14% of all conversational

urns. In addition, any assignment errors (i.e., too few or many words

dded to the given segment) resulting from this type of alignment pro-

edure are independent of each other and have an expected value of

ero, and hence the actual error also approaches zero when all the 15

egments from a subject are pooled together to get subject-level refer-

nce counts. Therefore, the performance figures reported for LENA be-

ow can be considered representative, even if exact alignments between

ENA outputs and the current audio samples were not available. Since

ur proposed system uses adaptation-based scaling of signal and sylla-

le features into word counts in each corpus, we also experimented with

orpus-dependent least-squares linear scaling of LENA word counts us-

ng the same LOSO protocol. However, this did not lead to consistent

erformance improvements 7 on the held-out data across the four En-

lish corpora (for which LENA outputs were available), and therefore

e report LENA performance based on default LENA output. 

.2. Main results 

Fig. 3 shows the results from the main WCE performance evaluations

or each SAD, syllabifier, and corpus. In addition Fig. 4 shows the per-

ormance of the BLSTM syllabifier (with augmentation and dropout) on

he six different corpora as a function of observed speech when ideal

tterance segmentation is used. 

In case of ideal utterance segmentation ( Fig. 3 , top), all compared

yllabifiers perform relatively well with the median estimation error be-

ng below 10% in nearly all cases. The duration baseline also reaches

elatively good performance levels, but is still on average worse than

he syllabifier-based approaches. Fig. 4 also demonstrates how the esti-

ation error decreases practically linearly in the log/log-domain when

ore speech is observed: Even if the accuracy at the level of individ-

al utterances is not high (around ERR median = 40–60%), the estimate

ecomes gradually more accurate over time. In general, it appears that

pproximately 100 s of adult speech would be sufficient for approx.

10% relative error in word counts independently of the language, as-

uming that the SAD used is perfectly accurate. However, one can also

ee from the zoomed-in region of Fig. 4 that the performance improve-

ents on L05 corpus appear to start to saturate at approx. 10% relative

rror level after one minute of observed speech data. This demonstrates

n practice the fact that there is no guarantee that the system, when op-

imized to minimize the WCE error across all the adaptation data, would

e fully unbiased on any individual subject. 

As can be expected, overall performance is notably lower in the more

ealistic use case with actual SADs ( Fig. 3 , panels 2–4). In addition, clear

ifferences between the corpora and SADs can be observed. For instance,

he use of TO-Combo-SAD leads to relatively good performance across

he board, except for WAR corpus where the errors are three-fold com-

ared to the other corpora. In contrast, Noisemes SAD does slightly bet-

er than TO-Combo-SAD on WAR, but performs poorly on ROS and MCD.

penSMILE SAD has very good performance on some of the corpora and

lso the best performance of all on WAR, even though performance on

ER, MCD, and L05 is slightly worse than with TO-Combo-SAD. Interest-

ngly, fixed-frame segmentation without any speech detection front-end

utperforms the Noisemes SAD when the BLSTM syllabifier is used. The

verall pattern of results suggests that none of the tested SADs are well-

ounded performers, and suitability of the SAD for a given recording

nvironment has an effect on overall system performance. OpenSMILE
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Fig. 3. Results from the main experiments. Each panel shows the WCE error rate ERR median for each corpus and syllabifier when using a specific SAD. The mean 

across the corpora is also shown for each syllabifier. Top panel: TO-Combo-SAD. Second panel: OpenSMILE SAD. Third panel: Noisemes SAD. Bottom panel: fixed 

5-s segments. LENA reference performance is shown with black bars where available. 3rd and 7th deciles are shown with vertical bars. Note that LENA performance 

is only shown for reference and does not depend on the SADs tested in the present experiments. 

Fig. 4. Performance as a function of the duration of observed speech when using ideal segmentation into utterances from adult speakers. Results are shown for the 

BLSTM syllabifier trained with data augmentation and dropout. 
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data. 
AD has the best average performance of all the alternatives whereas

oisemes SAD is clearly not as suitable for the present task. To-Combo-

AD would otherwise be on par with OpenSMILE, but the problems with

AR cause its mean performance to deteriorate substantially. 

As for the compared syllabifiers, the BLSTM generally outperforms

he unsupervised methods thetaSeg and WN when either of the two well-

erforming SADs or fixed-frame segmentation is used, especially when

raining data augmentation has been used. WN and thetaSeg perform

pproximately at the same level with the non-augmented BLSTMs with
72 
r without dropout with some variation across corpora and SADs, but

all behind the augmented BLSTMs in overall accuracy and consistency.

his demonstrates that the multilanguage training of the BLSTM indeed

orks so that the models generalize to novel languages, and that the

LSTM is more tolerant against non-speech noise in the signals than

he unsupervised methods. The results also suggest that training data

ugmentation and dropout training are both useful in the task despite

he hundreds of thousands of syllable exemplars available in the training
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Table 3 

Average SAD performance for different corpora and SADs compared, metrics averaged across all LOSO test sets on the given corpus. P = precision, R = recall, 

F = F -score. 

BER CAS L05 ROS MCD WAR mean 

P R F P R F P R F P R F P R F P R F P R F 

TO-Combo-SAD 0.34 0.45 0.38 0.58 0.59 0.58 0.29 0.48 0.36 0.53 0.51 0.51 0.26 0.43 0.34 0.29 0.44 0.32 0.38 0.48 0.41 

OpenSMILE SAD 0.26 0.86 0.40 0.39 0.88 0.53 0.20 0.88 0.31 0.36 0.80 0.49 0.14 0.85 0.27 0.19 0.84 0.29 0.26 0.85 0.38 

Noisemes SAD 0.51 0.26 0.34 0.66 0.22 0.32 0.39 0.30 0.32 0.56 0.14 0.20 0.30 0.21 0.25 0.38 0.31 0.31 0.47 0.24 0.29 

mean 0.37 0.52 0.37 0.54 0.56 0.48 0.29 0.55 0.33 0.48 0.48 0.40 0.23 0.50 0.29 0.29 0.53 0.30 0.37 0.53 0.36 
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Looking at the different languages tested, the proposed WCE sys-

em, especially the augmented BLSTM with dropout and TO-Combo-

AD, seems to reach similar performance levels in English (e.g., BER,

05, MCD), Spanish (ROS), and Tseltal (CAS). When the same syllab-

fier is paired with the OpenSMILE SAD, the resulting performance is

lso independent of the language in question. This demonstrates that

he language as such is not a key factor in determining system perfor-

ance, and that the adaptation procedure seems to work. However, it

lso seems that one of the English corpora, WAR, is more challenging

han the others as indicated by higher error rates in comparison. To un-

erstand why this is the case, we manually investigated the properties of

AR and compared it to the other English corpora. Even though it is dif-

cult to determine the exact source of the differences, WAR was found

o have the least adult speech among the corpora, several subjects hav-

ng extremely few unambiguously transcribed adult words across all the

udio for the subject. In contrast, the proportion of infant’s own vocal-

zations, the amount of background electronic speech (e.g., TV or radio,

ot transcribed for words), and the amount of adult singing was found

o be high for several subjects in WAR, potentially causing problems for

he SADs and for the WCE that is currently unable to distinguish differ-

nt sources of speech. Since WAR still has similar performance to others

n case of ideal utterance segmentation, this suggests that the errors are

elated to the lack of sufficiently well-performing mechanisms for de-

ecting adult speech from the audio recordings. We also verified that

he WCE performance of the BLSTM system did not correlate with the

verage SNR of each corpus ( p > 0.05, Pearson correlation), likely since

he SNR differences between the corpora are small ( Section 3.2 ). 

Finally, comparison to LENA shows that the TO-Combo-

AD + BLSTM system outperforms LENA on a number of varieties

f English (American in BER, British in L05, and Canadian in MCD),

ven though LENA has been optimized for American English. Only in

he case of WAR, performance is worse in the present system than in

ENA, again suggesting that the present system’s speaker attribution

echanisms are poorer than those of LENA, at least for the present task.

nfortunately, no LENA output data were available for the Spanish

r Tseltal corpora to enable comparison on the non-English languages

but see Fig. 8 in Section 5 ). 

.3. SAD impact on WCE performance 

The main results in Fig. 3 suggest that SAD performance on the test

ata might be one key factor behind the differences in the WCE perfor-

ance. To study this further, Table 3 shows the performance of the three

ADs on each of the corpora, declaring as “speech ” the adult utterances

hat contain one or more unambiguously transcribed words and all other

ections mapping to “non-speech ” or “silence ”. 8 The table reports preci-

ion (the proportion of speech frames hypothesized to be speech actually

eing speech), recall (the proportion of all true speech frames detected),

nd F-score (the harmonic mean of precision and recall). 
8 Note that this is different from evaluating against all annotated speech seg- 

ents (which further includes speech that is not comprehensible, speech by 

ther children, and potential speech by the child with the recorder) or all anno- 

ated vocalizations (which include non-linguistic vocalizations). 

W  

a  

t  

a  

i  

73 
As the data shows, all three SADs have very different operating points

n the daylong infant data. While TO-Combo-SAD has a more balanced

recision and recall (though still having problems with precision on L05,

CD, and WAR), OpenSMILE SAD reaches a very high recall at the cost

f precision whereas Noisemes SAD has the highest precision but the

orst recall. Overall the F-scores of TO-Combo-SAD and OpenSMILE

re close to each other, and much better than that of the Noisemes SAD,

eflecting the pattern of the main WCE results. SAD F-scores did not

orrelate with the average SNR of each corpus ( p > 0.05, Pearson cor-

elation). 

To further quantify how the SAD performance metrics affect WCE

erformance, Fig. 5 shows the WCE performance across all the six cor-

ora as a function of the SAD precision, recall and F-score. As can be

bserved, increasing recall leads to lower error ( 𝜌 = − 0.45, p < 0.001;

ank correlation), but there is even a stronger effect of higher F-score

eading to better performance ( 𝜌 = − 0.65, p < 0.001). Together with

able 3 , these results support the idea that SAD performance on the

iven data is related to the corresponding WCE accuracy. 

It may seem surprising that the precision of SAD does not seem to

orrelate with WCE performance, and even recall explains only a lim-

ted proportion of the variance in the data. However, it is important to

emember that the system is adapted to the given language in such a

anner that any systematic under- or overestimation on the adaptation

ata is corrected with the 𝛼L -parameter. Therefore the WCE error should

onverge to zero given enough data, as long as the test data have the

ame properties as the adaptation data. This also applies to the SAD: As

ong as performance of the SAD is similar in adaptation and testing, the

rror should diminish over time due to this correction mechanism. In

ontrast, if the recall or precision suddenly change due to adaptation,

e that change an improvement or decline, it could be harmful to WCE

erformance. This is because the later stages of the system have no way

f knowing if the distributional characteristics of the input coming have

hanged radically. Alternatively, sudden improvements in SAD perfor-

ance could still boost the overall WCE accuracy: as the quality and/or

uantity of target speech data captured by the SAD improves, the cor-

esponding accuracy improvements in the uncorrected word count esti-

ates may outweigh the problems caused by the changing distributional

roperties of the data. 

In order to see whether changes in SAD performance (positive or neg-

tive) impact WCE errors, correlations between adaptation-normalized

AD performance and corpus normalized WCE performance were measured

t the level of individual test participants, defined as follows: For TO-

ombo-SAD and OpenSMILE SAD and each corpus, participant-specific

AD performance numbers (precision, recall, and F-score) were z-scored

sing the mean and variance of the adaptation data (i.e., excluding the

ubject itself from the dataset), and then transformed to the absolute

alue of the z-scores. As a result, 0 stands for test-case SAD performance

ypical to the adaptation data and positive values for increasingly dif-

erent performance from the adaptation data. Participant-level relative

CE errors ( Eq. (3) ) were also z-scored in an analogous manner across

ll the test folds to quantify the error on a given participant compared to

he performance on other subjects in the pool (negative value for below-

verage and positive value for above-average WCE error). The normal-

zed errors were averaged across all the six syllabifiers, and the data
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Fig. 5. WCE error as a function of SAD precision (left), recall (middle) and F-score (right). Different symbols indicate different SADs and colors indicate different 

syllabification algorithms. The shown 2nd order polynomial fit and the reported rank correlation r are calculated across all data points. A small amount of x-axis 

jitter has been added to the data to improve visual clarity. 

Fig. 6. Correlation between normalized WCE- 

performance ( y -axis) and normalized absolute 

change in the SAD performance ( x -axis) from 

adaptation data to test data. Red squares cor- 

respond to TO-Combo-SAD and blue circles to 

OpenSMILE. Significant correlations ( p < 0.05) 

for pooled data from both SADs are highlighted 

in red. Each row corresponds to a different cor- 

pus, as labeled on the right. 
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rom TO-Combo-SAD and OpenSMILE SAD were pooled before correla-

ion calculation to focus on the shared effects of SAD behavior. Results

f this analysis can be seen in Fig. 6 . 

The analysis with normalized data reveals that the changes in SAD

erformance between adaptation and testing do explain some of the

CE errors, but that the link between changes in SAD performance

nd WCE performance is not as straightforward as hypothesized above.

hanges in recall correlate with WCE errors in CAS ( r = 0.46, p = 0.044)

nd WAR ( r = 0.61, p = 0.004), and now also precision change is cor-

elated with WCE error in L05 ( r = 0.53, p = 0.017). In addition, larger

hanges in F-score result in larger errors in L05 ( r = 0.63, p = 0.003).

owever, precision, recall, and F-score changes have no effect in 14 out

f the 18 cases investigated, and even the observed effects on L05 and

AS are relatively weak. In fact, only one the effects (WAR) would per-

ist if a strict Bonferroni correction for multiple comparisons was carried
74 
ut. This is despite nearly all corpora having several participants who

ave substantially different SAD behavior in testing than what has been

bserved during adaptation. 

To see if the direction of SAD performance change is more infor-

ative of the WCE error, Fig. 7 shows the same analysis as above,

ut now using z-score normalized SAD scores but without taking the

bsolute value. In this case, negative SAD performance score means

elow- adaptation-average performance on the given test subject and

ositive SAD performance scores the opposite. Changes in precision

ave a clearer effect now: on L05, ROS, and WAR, participants with

he largest errors also have notably worse precision than the rest of the

articipants, correlation reaching as high as r = 0.74 ( p < 0.001) on L05.

onversely speaking, improvements in precision are associated with a

ecreasing error. A similar trend is also observed for the other three cor-

ora, even though the effects are not significant. As for recall, there is
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Fig. 7. Correlation between z-score normalized WCE-performance ( y -axis) and z -score normalized change in the SAD performance ( x -axis) from adaptation data to 

test data. Red squares correspond to TO-Combo-SAD and blue circles to OpenSMILE. Significant correlations ( p < 0.05) or pooled data from both SADs are highlighted 

in red. Each row corresponds to a different corpus, as labeled on the right. 
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o longer an effect on WAR, but the two participants with the worst per-

ormance have either substantially lower or higher recall than majority

f the population. For an unknown reason, MCD shows a pattern where

orse recall is associated with a smaller WCE error. Overall, there is

o clear pattern where decreases or increases in recall would map to

ystematic changes in WCE performance. Relative improvements in F-

core are generally associated with better WCE performance, reaching

ignificance on L05, ROS and WAR, but these seem to be largely driven

y the improvements in precision. 

Taken together, the results in Figs. 5–7 reveal that the SAD and WCE

erformance are partially connected. However, the connection is more

omplicated than simply stating that changing SAD performance would

lways map to worse WCE performance, or that any improvements in

AD performance would always lead to better WCE. What we can say

s that (1) high and consistent SAD performance is naturally desired

see also top panel in Fig. 4 for performance if the SADs were ideal),

2) sometimes overall changes in recall from adaptation to testing are

ssociated with larger estimation errors, and (3) improving precision

rom adaptation to test appears to be connected to improved perfor-

ance. Still, it is important to remember that in all these cases, SAD

nd WCE performance numbers and their changes are ultimately re-
75 
ecting some kind of qualitative properties of the audio signals them-

elves. A more detailed understanding of the sources of error would

equire a better understanding of what is actually happening in the au-

io data, but this type of analysis is beyond the scope of the present

ork. 

.4. Parameter variation across syllabifiers and languages 

As a final step, we investigated how the adapted parameters 𝜃L and

L vary across the tested syllabifiers and languages when using TO-

ombo-SAD or OpenSMILE SAD. Full data on the analysis is shown in

ppendix A , and the main findings can be summarized as follows: 

(1) With TO-Combo-SAD, parameter 𝛽1 controlling the relationship

between estimated syllable counts and word counts performs as

would be expected, having a similar value for the three well-

performing English corpora (BER, MCD, L05). 𝛽1 is lower for

Tseltal and Spanish due to the higher number of syllables per

word in these languages. For OpenSMILE SAD, there is a more

complicated corpus-dependent pattern for the use of syllable

counts and other alternative features in the word count predic-

tions. 
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Fig. 8. Performance of the current WCE system ( “ACLEW ”; solid colored dots) plotted together with LENA performance on the same data (black dots) and in a 

number of earlier studies (other colored markers) using the ERR median (%) as the performance metric (see also Table 1 ). The dashed red line shows a line fit to the 

data on LENA performance on non-English data. A slight amount of jitter is added to x -axis values to improve clarity. 
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9 As mentioned in the introduction, LENA software processing is restricted to 

LENA-recorder outputs. 
(2) Syllable detection thresholds 𝜃L of the BLSTM-based syllabifier

variants are similar across all corpora (approx. 0.6; remember

that these values are nucleus likelihoods in range 0–1), suggest-

ing that a fixed threshold could be used across languages. Vari-

ation of the optimal thresholds in WN and thetaSeg have much

larger relative changes compared to the mean optimal value, cor-

responding to large qualitative changes between highly sensitive

( 𝜃L ≈ 0) and much more conservative ( 𝜃L > 0.1) syllabification

strategies (note that the absolute values are not directly compa-

rable with the BLSTMs). 

(3) In BLSTMs, speech duration is not used as a positive evidence

for words, but is replaced by syllable count, mean sonority, and

sometimes sonority SD. WN uses more varying weighing of the

features depending on the corpus, sometimes using duration as

a major predictor with more conservative syllabification strategy

and vice versa. 

(4) Parameter variation across training folds is typically limited

within a corpus, as can be expected because roughly 90% of the

data are the same in each training fold. 

. Conclusions and future work 

The aim of this study was to describe a basic framework for auto-

atic word count estimation from daylong audio recordings of sound

nvironments of language-learning infants, and to test its applicability

o multiple languages and language environments. We also compared

 number of speech activity detectors and automatic syllabifiers as po-

ential modules in the pipeline and studied the applicability of super-

ised neural network training for language-independent syllabification

f speech, as evaluated in terms of overall WCE system performance. 

One of the key aims was to have a system that performs similarly in

igh- and low-resource languages, as the existing commercially avail-
76 
ble LENA system is expected to perform better on English than other

ata. To place the present work in a context, Fig. 8 shows the cur-

ent WCE system performance (with OpenSMILE SAD and augmented-

raining BLSTM syllabifier) together with LENA performance metrics on

nglish from the same study. In addition, LENA performance on a vari-

ty of other languages from a number of earlier publications is shown.

ith the exception of the WAR corpus, the present system achieves

ower relative word count error rates on all tested language samples

ompared to what LENA has achieved in the previous studies. It also

utperforms LENA on three of the four varieties of English tested in the

resent experiments. Importantly, the performance on English, Argen-

inian Spanish, and Tseltal is very similar despite the wide variation

n language and recorder types. In contrast, LENA accuracy has histor-

cally varied enormously depending on the language being recorded,

ith non-English data having substantially worse word count accuracies

han English data ( Fig. 8 ). This demonstrates that the basic approach

onsisting generic out-of-the-box SAD, language-independent syllabifi-

ation, and domain-specific adaptation of a small number of parame-

ers works both in principle and in practice. The current performance is

ar from ideal, but is still better than the static English-based acoustic

odel and mapping to word counts used in LENA. Unfortunately, our

on-English corpora were not able to be processed with the LENA sys-

em, and therefore direct comparisons on exactly the same data is not

ossible. 9 It should also be noted that LENA word count estimates can

lso be linearly scaled to obtain more accurate word count estimates on

ovel languages and dialects, given that a suitable conversion coefficient

s known or estimated from annotated data. In our experiments with the

ifferent varieties of English, linear scaling of LENA outputs based on

he leave-one-subject-out adaptation protocol did not provide system-
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tic performance gains beyond the default LENA output ( Section 4.1 ).

owever, LENA word count scaling is highly recommended for other

anguages if one wishes to use LENA to measure not only relative but

lso absolute word counts in an accurate manner. 

From a technical point of view, the study demonstrates the applica-

ility of supervised training of a neural network-based syllabifier. When

ultiple different training languages are used at the same time, such a

yllabifier is also capable of reaching consistent behavior in languages

ot included in the training data. Furthermore, the BLSTM syllabifier

utperformed two previously used syllabification methods, including

he WN algorithm used in the WCE system of Ziaei et al. (2016) , which

ad outperformed multiple alternative syllabifiers in the experiments of

iaei et al. In addition, training data augmentation using a variety of

ealistic additive noise types and channel variability (based on random

IR-filters) was found to consistently improve syllabifier performance

n the WCE task where signal conditions are extremely difficult com-

ared to any typical speech processing problem. This suggests that neu-

al network-based supervised syllabifiers could also work well in other

asks requiring syllable detection from speech. However, direct evalua-

ion of syllabification accuracy instead of WCE performance was beyond

he scope of the present study, and should be carried out separately. 

.1. Limitations and future work 

The pattern of results shows that basic idea of adapting the system

o a new language or dialect by using 30–60 min of annotated adult

peech works in principle, and that the WCE performance does not criti-

ally depend on the language in question. Instead, the main performance

roblems, especially transparent on the WAR data, seem to be associated

ith at least two central factors: (1) the current lack of a reliable com-

onent for separating different sources and styles of vocal activity from

ach other, and (2) limited SAD performance on the daylong data. 

In the present WCE system, all speech passing through a generic

AD is treated as equal, whereas for child language research it would

e important to distinguish adults, siblings, the key child, and, e.g.,

ources of electronic speech (TV, radio) from each other since prior

ork shows that child-directed speech, particularly from adults, is pre-

ictive of children’s later linguistic development (e.g., Shneidman and

oldin-Meadow, 2012 ). In addition, some content such as singing or

on-linguistic communicative vocalizations (e.g., laughter) can be cat-

gorized as speech, but its acoustic features do not have the same rela-

ionship to spoken word counts that normal speech does. To allow direct

omparison with LENA, we chose to only evaluate our system against

ranscribed speech from adult talkers. However, now that the basic con-

ept and its functionality have been validated, the next efforts should

e directed toward the development and testing of a robust speaker

iarization module required for speaker attribution. Although the cur-

ent ACLEW virtual machine published in Le Franc et al. (2018) already

ontains one such a tool, DiarTK ( Vijayasenan and Valente, 2012 ), its

erformance was found to be lacking on child daylong data (see also

iHARD diarization challenge 10 where DiarTK scored at the bottom

mong all the submissions; see also Le Franc et al., 2018 ). In order to

aintain focus on SAD and syllabifier comparisons, no separate experi-

ents with diarization tools were included in the present report. More

ork is needed to identify the best ways to tackle the problem of who

s speaking (and whether it is an electronic device or a live person),

nd preferably also what the style of speech is (infant-directed, adult-

irected, singing, shouting, etc.). 

It is also obvious that the performance of all compared SADs is far

rom ideal on the present type of daylong data, as WCE from SAD out-

uts falls far behind the performance of a system using oracle utterance

oundaries. This problem could be approached in several ways in the

uture. One option is to start using a SAD that can also be adapted to
10 https://coml.lscp.ens.fr/dihard/index.html . 

a  

S  

C

77 
he target domain, or at least to re-train the current SADs on a large

mount of child daylong recordings instead of using the original mod-

ls provided by the algorithm authors. An alternative solution would

e to integrate SAD with the speaker diarization or syllabification al-

orithms, and seek ways to efficiently train or adapt this unified model

o the daylong data. Speech enhancement and/or statistical normaliza-

ion as a front-end for SAD should be also investigated, as the strategy

sed so far was to apply enhancement only to SAD output segments in

rder to save computational costs. In general, more intelligent, robust,

nd adaptable systems towards the highly variable signal conditions and

ignal statistics encountered in unconstrained daylong recordings are re-

uired. 

The final important factor to mention is that the gold standard word

ounts derived from orthographic annotations are not always unani-

ous due to several factors, and this problem applies to WCE evalua-

ion both in the current system and in LENA. In the current corpora, all

peech that the annotators could transcribe based on repeated listening

ad been transcribed, while the unclear vocalizations are simply marked

s “cannot transcribe ”. In practice, there is a continuum from clear near-

eld speech to hardly audible noisy content that is only partially com-

rehensible. Since the current datasets do not provide any information

n the clarity of the input for the transcribed words, all transcribed to-

ens from this continuum are treated as equally relevant targets for the

CE. Another potential source of uncertainty comes from the potential

ifferences in how faithfully spoken language maps into orthographic

ranscripts, and especially how well whitespaces in the orthographic

ranscripts can be used to define word boundaries in the running speech

n different languages compared. Importantly, however, there is no ob-

ious reason why uncertainties in the gold standard word counts would

pecifically favor any of the compared system configurations. Instead, it

s simply important to be aware that the performance figures for word

ount accuracies hide a number of factors that may artificially inflate or

eflate the error rates, ultimately depending on how the actual target

ord counts are transcribed and defined for the evaluations. 

In sum, this study is the first to test publicly available speech tools

or word count estimation on daylong child recordings in different lan-

uages in comparable settings, and, to the best of our knowledge, the

rst to demonstrate the applicability of language-independent super-

ised syllabifiers of speech. More work is still needed to come up with a

omprehensive set of open-source tools for analyzing linguistic content

n daylong real-world recordings. The present relatively straightforward

ystem for word count estimation is only the first step in that direction.

eclaration of Competing Interest 

The authors declare that they have no known competing financial

nterests or personal relationships that could have appeared to influence

he work reported in this paper. 

cknowledgments 

This research was funded as a part of Analyzing Child Language Ex-

eriences around the World (ACLEW) collaborative project funded by

he Trans-Atlantic Platform for Social Sciences and Humanities “Dig-

ing into Data ” challenge, including a local Academy of Finland grant

 312105 ) to OR, ANR-16-DATA-0004 ACLEW to AC, NEH HJ-253479-

7 to EB, HJ-253479 to CR, and funding from the Social Sciences and

umanities Research Council of Canada to MS ( 869-2016-0003 ). MC

as funded by an NWO Veni Innovational Research grant ( 275-89-

33 ). In addition, OR was funded by an Academy of Finland grant no.

14602 , MS by a Social Sciences and Humanities Research Council of

anada Insight Grant ( 435-2015-0628 ), and AC by Agence Nationale

e la Recherche ( ANR-14-CE30-0003 MechELex , ANR-17-EURE-0017 )

nd the J. S. McDonnell Foundation Understanding Human Cognition

cholar Award. EB was funded by NIH DP5-OD019812 , and CR by

ONICET grants PIP 80/201 and PICT 3327/2014 . 

https://www.coml.lscp.ens.fr/dihard/index.html
https://doi.org/10.13039/501100002341
https://doi.org/10.13039/501100000155
https://doi.org/10.13039/501100003246
https://doi.org/10.13039/501100002341
https://doi.org/10.13039/501100000155
http://dx.doi.org/10.13039/501100001665
https://doi.org/10.13039/501100002923


O. Räsänen, S. Seshadri and J. Karadayi et al. Speech Communication 113 (2019) 63–80 

 

I  

l  

g  

g  

t  

c  

t  

m  

c

 

2

S

 

t

A

 

s  

s

F

s

t

p

m

The authors would like to thank Tobias Busch, Adriana Weisleder,

ris-Corinna Schwarz, Ellen Marklund, and Melanie Canault and her col-

eagues for providing their data on LENA reliability on the various lan-

uages, and John Hansen for kindly providing the TO-Combo-SAD al-

orithm to be used in the project, as well as Anne Warlaumont and

he LuCiD Language0–5 team for generously providing access to their

orpora. Thanks are also due to the many research assistants who con-

ributed to the annotation and transcription of the corpora, and to the

any research participant families who generously provided audio ac-

ess to their everyday intimate lives for research purposes. 

An early version for parts of this work was presented at Interspeech-

018 conference in September 2018 at Hyderabad, India. 
ig. A1. Learned mapping parameters 𝜃L and 𝛃L of different syllabifiers on the diff

yllabifiers (see the legend) and red error bars denote parameter standard deviation 

he corpora are shown, for which standard deviation of the parameter across the co

er word. Second panel: duration of speech (in seconds) per word. Middle panel: mea

ean of signal power. Sixth panel: SD of signal power. Bottom panel: syllable detecti
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upplementary materials 
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ppendix A: Parameter variation across corpora and subjects 

Fig. A1 shows the linear mapping parameter values across different

yllabifiers and corpora when using TO-Combo-SAD. Fig. A2 shows the

ame parameters for OpenSMILE SAD. 
erent corpora (with TO-Combo-SAD). Different color bars stand for different 

across all training folds on the given corpus. Mean parameter values across all 

rpora is shown with black error bars. Top panel: number of detected syllables 

n of the sonority envelope. Fourth panel: SD of sonority envelope. Fifth panel: 

on threshold. 
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Fig. A2. Learned mapping parameters 𝜃L and 𝛃L of different syllabifiers on the different corpora (with OpenSMILE SAD). 
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