What did you say? Infants’ early productions match caregiver input

Catherine Laing
Cardiff University
laingc@Cardiff.ac.uk

Elika Bergelson
Duke University

Boston University Conference on Child Language Development, November 2017
Background

• Contingent parent feedback → more speech-like babble (Goldstein & Schwade, 2008)
 • Didn’t find phoneme matching above chance, but used a quite coarse metric
• Infants are more sensitive to word onsets than offsets (e.g. Swingley, 2005)
• Articulatory filter: Infant ‘tuned in’ to own production (Vihman, 1993)
• Vocal Motor Schemes (VMS; McCune & Vihman, 2001): “well-practiced and longitudinally stable vocal productions”
 • VMS influences speech perception:
 • Infants with 1 VMS listen longer to wordlists with that consonant that wordlists without it (Majorano et al, 2014)
Terminology

• for a given baby, do they have stable consonants?
 • Yes: withVMS baby
 • No: noVMS baby

My vms: /b,p/

ba ba ba ba...
ma na ta ta...

ba ba ta ga...

withVMS baby

noVMS baby
Terminology

- for a given baby, do they have stable consonants?
 - Yes: withVMS baby
 - No: noVMS baby

- for a given consonant production (CP) by an infant:
 - is it in that child’s VMS inventory?
 - Yes: inVMS consonant, i.e. congruent with their VMS
 - No: outVMS consonant, i.e. incongruent with their VMS
Terminology

• for a given baby, do they have stable consonants?
 • Yes: withVMS baby
 • No: noVMS baby

• for a given consonant production (CP) by an infant:
 • is it in that child’s VMS inventory?
 • Yes: inVMS consonant, i.e. congruent with their VMS
 • No: outVMS consonant, i.e. incongruent with their VMS
 • Does it match something they just heard from a caregiver?
 • Yes: input-congruent
 • No: input-incongruent
Research Questions

1. Do infants with stable vocal motor schema (withVMS) produce more **VMS-congruent** consonants or **VMS-incongruent** consonants?

2. Do infants with stable vocal motor schema (withVMS) produce more consonants that are **congruent with their input** than noVMS infants?

3. Are **input-congruent consonant productions** more often inVMS vs. outVMS sounds?
The SEEDLingS Corpus

- 44 infants recorded at home, monthly, from age 6-17 months
- Largely homogenous sample
- Hour-long video and day-long audio recordings
- Lots of other data not discussed here (e.g. CDIs, in-lab word comp., etc.)

Present study: Audio & Video recordings, age 10/11 months
 - Determine VMS from top 30 minutes of daylong audio
 - Annotate all child consonant productions from hourlong video
 - Annotate caregiver prompts from 15s preceding each child consonant production in video
Step 1: determining each infant’s VMS

- Audio data from LENA recordings
- 30 minutes of highest-talk-volume infant productions (Child Vocalization Counts)
 - 2/3 of top 30 minutes were baby alone!
- Every consonant production (CP) counted for each infant
- VMS = ≥50 of any single Consonant Production during 30-min segment
 - Ignoring voicing distinction (p=b)
- Note: differs from VMS as defined in McCune & Vihman, 2001

22 infants = withVMS
22 infants = noVMS
Consonant Production: with VMS babies produce more tokens

Wilcoxon Rank Sum Test
Consonant Production: same general trend across consonant categories, across groups

Consonant type: $F(4,210)=6.22$, $p<.001$
Sanity Check: VMS group effect holds in videos

30 minute sample

** M=106.75, SD=117.47

Between-subjects ANOVAs

M=42.57, SD=31.6

p=.055 M=4.88, SD=1.88
Research Questions

1. Do infants with stable vocal motor schema (withVMS) produce more **VMS-congruent** consonants or **VMS-incongruent** consonants?
Analysis: VMS Match

% VMS match (vs. scrambled infant data 41%= chance)

Do the Consonant Productions match VMS?

<table>
<thead>
<tr>
<th>Infant</th>
<th>VMSGroup</th>
<th>VMS</th>
<th>Consonant Prod.</th>
<th>Caregiver input</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>noVMS</td>
<td></td>
<td>g</td>
<td>ball</td>
</tr>
<tr>
<td>1</td>
<td>noVMS</td>
<td></td>
<td>b</td>
<td>puppy</td>
</tr>
<tr>
<td>2</td>
<td>withVMS</td>
<td>b</td>
<td>d</td>
<td>ball</td>
</tr>
<tr>
<td>2</td>
<td>withVMS</td>
<td>b</td>
<td>b</td>
<td>doggie</td>
</tr>
<tr>
<td>3</td>
<td>withVMS</td>
<td>d</td>
<td>d</td>
<td>ball</td>
</tr>
<tr>
<td>3</td>
<td>withVMS</td>
<td>d</td>
<td>b</td>
<td>doggie</td>
</tr>
</tbody>
</table>
Results: withVMS infants just as likely to produce inVMS consonants as outVMS consonants in videos

- 47% of withVMS infants’ CPs matched their VMS consonants (SD=.3)
- This did not differ from chance (41%; p=.24)

Wilcoxon test, outliers included
Research Questions

1. Do infants with stable vocal motor schema (withVMS) produce more **VMS-congruent** consonants or **VMS-incongruent** consonants?

 No difference! But withVMS babies > noVMS babies

2. Do infants with stable vocal motor schema (withVMS) produce more consonants that are **congruent with their input** than noVMS infants?
Video Example of Child Productions & Caregiver Input Matching
Analysis

% input match (vs. scrambled Caregiver data: 13%)

Do the CPs match Caregiver prompt?

<table>
<thead>
<tr>
<th>Infant</th>
<th>VMSGroup</th>
<th>VMS</th>
<th>Consonant Prod.</th>
<th>Caregiver input</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>noVMS</td>
<td>g</td>
<td></td>
<td>doggie</td>
</tr>
<tr>
<td>1</td>
<td>noVMS</td>
<td>b</td>
<td></td>
<td>doggie</td>
</tr>
<tr>
<td>2</td>
<td>withVMS</td>
<td>b</td>
<td>d</td>
<td>puppy</td>
</tr>
<tr>
<td>2</td>
<td>withVMS</td>
<td>b</td>
<td>b</td>
<td>doggie</td>
</tr>
<tr>
<td>3</td>
<td>withVMS</td>
<td>d</td>
<td>d</td>
<td>ball</td>
</tr>
<tr>
<td>3</td>
<td>withVMS</td>
<td>d</td>
<td>b</td>
<td>ball</td>
</tr>
</tbody>
</table>

↑ audio ↑ annotation ↑ video annotation ↑
Results: Infants Match Caregiver Input

- Both withVMS and noVMS infants **match caregiver input** above chance, i.e. scrambled caregiver data (.56 vs. 13: both $p>.001$, by Wilcoxon Test)
- withVMS infants matched caregiver input significantly more than noVMS infants:

Between-subjects ANOVA

\[p=.03 \]

\[M=.56, \]
\[SD=.21 \]
Research Questions

1. Do infants with stable vocal motor schema (withVMS) produce more **VMS-congruent** consonants or **VMS-incongruent** consonants?
 No difference! But withVMS babies > noVMS babies

2. Do infants with stable vocal motor schema (withVMS) produce more consonants that are **congruent with their input** than noVMS infants?
 All infants produced input-congruent consonants above chance;
 But withVMS infants did so > noVMS infants

Hey, she said a thing I can say!
Me too!
Me more!

 hey look, a ball!

withVMS baby

Input
Research Questions

1. Do infants with stable vocal motor schema (withVMS) produce more **VMS-congruent** consonants or **VMS-incongruent** consonants?

 No difference! But withVMS babies > noVMS babies

2. Do infants with stable vocal motor schema (withVMS) produce more consonants that are **congruent with their input** than noVMS infants?

 All infants produced input-congruent consonants above chance;

 But withVMS infants did so > noVMS infants

3. Are **input-congruent consonants** more likely to be inVMS than outVMS sounds?

 ![Diagram showing examples of input-congruent consonants](image)
Results: withVMS infants match Caregiver Input more when the input is in their VMS inventory

Wilcoxon test, outlier included in figure
Results: Caregiver Input

• Comparing outVMS responses to those of infants with noVMS

All CPs are outVMS for infants who have no VMS to begin with.

Wilcoxon test, outliers included in figure.
Research Questions

1. Do infants with stable vocal motor schema (withVMS) produce more VMS-congruent consonants or VMS-incongruent consonants?
 No difference! But withVMS babies > noVMS babies

2. Do infants with stable vocal motor schema (withVMS) produce more consonants that are congruent with their input than noVMS infants?
 All infants produced input-congruent consonants above chance;
 But withVMS infants did so > noVMS infants

3. Are input-congruent consonants more likely to be inVMS than outVMS sounds?
 Yes! Infants produced more input-congruent CP if input was inVMS
Discussion

• Support for articulatory filter hypothesis

• Previous research used HPP to test *perception* of VMS; we show that this also mediates *production*, from as young as 0;10

• Perception \leftrightarrow Production

• Goldstein & Schwade (2008): Analysis too general?

• Focusing on what infants *can already produce* presents new evidence for role of input on shaping infants’ phonological development
Next steps

• Analysis of infants’ attention to objects in environment
• Grouping one vs. multiple VMS infants
• Transition from babble \rightarrow words
• Do multiple VMS infants produce more object-contingent CPs?
Conclusions

• withVMS infants produce more consonants than noVMS infants
• But, withVMS infants’ productions weren’t dominated by VMS consonants
• All infants’ consonant production was influenced by their input...
 • But having an established VMS consonant shaped infants’ production, guided by input that was congruent with their VMS
• Babbling infants ‘reply’ to their input, especially if it uses their best consonants
• SEEDLingS & Blab Staff: Koorathota, Tor, Schneider, Amatuni, Dailey, Garrison & small army of RAs!

• NIH Early Independence Award

• Digging Into Data NEH Award

• Our 44 SEEDLingS and their families!

Thank you!

The Bergelson Lab (BLAB) is always looking for awesome students, postdocs and staff, ask me for more information!
References

Thank you!