What did you say? Infants' early productions match caregiver input

Catherine Laing *Cardiff University* laingc@Cardiff.ac.uk

Elika Bergelson

Duke University

Boston University Conference on Child Language Development, November 2017

Background

- Contingent parent feedback → more speech-like babble (Goldstein & Schwade, 2008)
 - Didn't find phoneme matching above chance, but used a quite coarse metric
- Infants are more sensitive to word onsets than offsets (e.g. Swingley, 2005)
- Articulatory filter: Infant 'tuned in' to own production (Vihman, 1993)
- Vocal Motor Schemes (VMS; McCune & Vihman, 2001): "well-practiced and longitudinally stable vocal productions"
 - VMS influences speech perception:
 - Infants with 1 VMS listen longer to wordlists with that consonant that wordlists without it (Majorano et al, 2014)

Terminology

- for a given baby, do they have stable consonants?
 - Yes: withVMS baby
 - No: noVMS baby

Terminology

- for a given baby, do they have stable consonants?
 - Yes: withVMS baby
 - No: noVMS baby
- for a given consonant production (CP) by an infant:
 - is it in that child's VMS inventory?
 - Yes: inVMS consonant, i.e. congruent with their VMS
 - No: outVMS consonant, i.e. **in**congruent with their VMS

Terminology

- for a given baby, do they have stable consonants?
 - Yes: withVMS baby
 - No: noVMS baby
- for a given consonant production (CP) by an infant:
 - is it in that child's VMS inventory?
 - Yes: inVMS consonant, i.e. congruent with their VMS
 - No: outVMS consonant, i.e. incongruent with their VMS
 - Does it match something they just heard from a caregiver?
 - Yes: input-congruent
 - No: input-incongruent

Input

hey look, a <u>ball</u>!

baby

- Do infants with stable vocal motor schema (withVMS) produce more VMS-congruent consonants or VMS-<u>in</u>congruent consonants?
- 2. Do infants with stable vocal motor schema (withVMS) produce more consonants that are **congruent with their input** than noVMS infants?
- 3. Are **input-congruent consonant productions** more often inVMS vs. outVMS sounds?

The SEEDLingS Corpus

- 44 infants recorded at home, monthly, from age 6-17 months
- Largely homogenous sample
- Hour-long video and day-long audio recordings
- Lots of other data not discussed here (e.g. CDIs, in-lab word comp., etc.)
- Present study: Audio & Video recordings, age 10/11 months
 - Determine VMS from top 30 minutes of <u>daylong audio</u>
 - Annotate all child consonant productions from <u>hourlong video</u>
 - Annotate caregiver prompts from 15s preceding each child consonant production in video

Step 1: determining each infant's VMS

- Audio data from LENA recordings
- 30 minutes of highest-talk-volume infant productions (Child Vocalization Counts)
 - 2/3 of top 30 minutes were baby alone!
- Every consonant production (CP) counted for each infant
- VMS = ≥50 of any single Consonant Production during 30-min segment
 - Ignoring voicing distinction (p=b)
- Note: differs from VMS as defined in McCune & Vihman, 2001

Consonant Production: withVMS babies produce more tokens

Consonant Production: same general trend across consonant categories, across groups

Consonant type: F(4,210)=6.22, p<.001

Sanity Check: VMS group effect holds in videos

 Do infants with stable vocal motor schema (withVMS) produce more VMS-congruent consonants or VMS-<u>incongruent</u> consonants?

Analysis: VMS Match

% VMS match

(vs. scrambled infant data 41%= chance)

Do the Consonant Productions match VMS?

Infant	VMSGroup	VMS	Consonant Prod.	Caregiver input
1	noVMS		g	ball
1	noVMS		b	рирру
2	withVMS	b	d	ball
2	withVMS	b	b	doggie
3	withVMS	d	d	ball
3	withVMS	d	b	doggie
		个 audio 个 annotation	个 video 个 annotation	

Results: withVMS infants just as likely to produce inVMS consonants as outVMS consonants in videos

- 47% of withVMS infants' CPs matched their VMS consonants (SD=.3)
- This did not differ from chance (41%; p=.24)

 Do infants with stable vocal motor schema (withVMS) produce more VMS-congruent consonants or VMS-<u>incongruent</u> consonants?

No difference! But withVMS babies > noVMS babies

2. Do infants with stable vocal motor schema (withVMS) produce more consonants that are **congruent with their input** than noVMS infants?

Video Example of Child Productions & Caregiver Input Matching

Analysis

% input match (vs. scrambled Caregiver data: 13%)

Do the CPs match Caregiver prompt?

Infant	VMSGroup	VMS	Consonant Prod.	Caregiver input
1	noVMS		g	doggie
1	noVMS		b	doggie
2	withVMS	b	d	рирру
2	withVMS	b	b	doggie
3	withVMS	d	d	ball
3	withVMS	d	b	ball
		\uparrow audio \uparrow annotation	\uparrow video annotation \uparrow	

17

Results: Infants Match Caregiver Input

- Both withVMS and noVMS infants **match caregiver input** above chance, i.e. scrambled caregiver data (.56 vs. 13: both p>.001, by Wilcoxon Test)
- withVMS infants matched caregiver input significantly more than noVMS infants:

Between-subjects ANOVA

- Do infants with stable vocal motor schema (withVMS) produce more VMS-congruent consonants or VMS-<u>incongruent</u> consonants? No difference! But withVMS babies > noVMS babies
- 2. Do infants with stable vocal motor schema (withVMS) produce more consonants that are congruent with their input than noVMS infants? All infants produced input-congruent consonants above chance; But withVMS infants did so > noVMS infants

 Do infants with stable vocal motor schema (withVMS) produce more VMS-congruent consonants or VMS-<u>in</u>congruent consonants?

No difference! But withVMS babies > noVMS babies

- 2. Do infants with stable vocal motor schema (withVMS) produce more consonants that are congruent with their input than noVMS infants? All infants produced input-congruent consonants above chance; But withVMS infants did so > noVMS infants
- 3. Are **input-congruent consonants** more likely to be inVMS than outVMS sounds?

Results: withVMS infants match Caregiver Input **more** when the input is in their VMS inventory

Results: Caregiver Input

Comparing outVMS responses to those of infants with noVMS

- Do infants with stable vocal motor schema (withVMS) produce more VMS-congruent consonants or VMS-<u>in</u>congruent consonants?
 No difference! But withVMS babies > noVMS babies
- 2. Do infants with stable vocal motor schema (withVMS) produce more consonants that are congruent with their input than noVMS infants? All infants produced input-congruent consonants above chance; But withVMS infants did so > noVMS infants
- 3. Are **input-congruent consonants** more likely to be inVMS than outVMS sounds? Yes! Infants produced more input-congruent CP if input was inVMS

23

Discussion

- Support for articulatory filter hypothesis
- Previous research used HPP to test perception of VMS; we show that this also mediates production, from as young as 0;10
- Perception \leftrightarrow Production
- Goldstein & Schwade (2008): Analysis too general?
- Focusing on what infants <u>can already produce</u> presents new evidence for role of input on shaping infants' phonological development

Next steps

- Analysis of infants' attention to objects in environment
- Grouping one vs. multiple VMS infants
- Transition from babble \rightarrow words
- Do multiple VMS infants produce more object-contingent CPs?

Conclusions

- withVMS infants produce more consonants than noVMS infants
- But, withVMS infants' productions weren't dominated by VMS consonants
- All infants' consonant production was influenced by their input...
 - But having an established VMS consonant shaped infants' production, guided by input that was congruent with their VMS
- Babbling infants 'reply' to their input, especially if it uses their best consonants

- SEEDLingS & Blab Staff: Koorathota, Tor, Schneider, Amatuni, Dailey, Garrison & small army of RAs!
- NIH Early Independence Award
- Digging Into Data NEH Award
- Our 44 SEEDLingS and their families!

Thank you!

The Bergelson Lab (BLAB) is always looking

tor awesome students, postdocs and staff, ask me for more information!

27

References

Bergelson, E. (2016). SEEDLingS Corpus. Databrary. Retrieved January 29, 2017 from <u>https://nyu.databrary.org/volume/228</u>.

Fenson, L., Dale, P. S., Reznick, J. S., Bates, E., Thal, D. J., & Pethick, S. J. (1994). Variability in early communicative development. *Monographs of the Society for Research in Child Development*, *59*, Serial No. 242.

Goldstein, M. & Schwade, J. (2008). Social feedback to infants' babbling facilitates rapid phonological learning. *Psychological Science*, 19, 515-523.

Macken, M. A., & Barton, D. (1980). The acquisition of the voicing contrast in English: A study of voice onset time in word-initial stop consonants. *Journal of Child Language*, 7(1), 41-74.

Majorano, M., Vihman, M. M. & DePaolis, R. (2014). The Relationship Between Infants' Production Experience and Their Processing of Speech. *Language Learning and Development*, 10, 179-204.

McCune, L. & Vihman, M. M. (2001). Early Phonetic and Lexical Development: A Productivity Approach, *Journal of Speech, Language and Hearing Research*, 44, 670-684.

Swingley, D. (2005). 11-Month-Olds' Knowledge of How Familiar Words Sound. *Developmental Science*, 8, 423-443.

Vihman, M. M. (1993). Variable paths to early word production. *Journal of Phonetics*, 21, 61-82.

Vorperian, H. K., & Kent, R. D. (2007). Vowel acoustic space development in children: A synthesis of acoustic and anatomic data. *Journal of Speech, Language, and Hearing Research, 50*(6), 1510-1545.

Thank you!

