Preserved Structure Across Vector Space Representations

Andrei Amatuni, Estelle He and Elika Bergelson | Department of Psychology and Neuroscience, Duke University

Duke

Duk

UNIVERSITY

CHILD
Studies

Research Questions: Results

1) Is cross-category structure preserved across visual & linguistic
representations?

CHILDES

10.5 million token child directed speech corpus

Common Crawl

42 billion token web crawl corpus R <-0.45, p<0.05
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- overlap neighbors, image neighbors, word neighbors
- overlap ratio (overlap/total neighbors) > 0 (p<.05)

_ Methods Operationalization

Reducing items (words & images) to a common representational format
Two vector space models:
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Discussion & Conclusions

ltems: common nouns (object words) heard & seen by 44 6-17m.o.’s in the
SEEDLiIngS Corpus, an audio & video corpus of infants in their home environment [1,

2) If so, does this influence infant learning?
* Yes, overlap in visual and semantic feature spaces is linked to words’ learnability (R <-0.45, p < 0.05)
* i.e. the more cluttered an item’s neighborhood, the harder that item is to learn.

Each item had a corresponding word, i.e. the lemma for the relevant concept, and a
set of images, i.e. examples of the perceptual input infants saw when they heard
these words.

Defining a prototypical image vector
As opposed to word vectors, where every word-form is fixed and corresponds to a single

vector, there is wide variance in images of any given category.
- Conceptual and sensory input are not independent or purely separable.

- Invariance relations across representational domains might be a useful cue for categorization/generalization/segmentation.
- Multi-dimensional clutter degrades learning.
- Vector space methods are a promising tool to model representational structure, without relying on (fraught) human judgments.

Choose the most central among a distribution: £, = argmin ) d(x,y)
Example Iltems (Images and Words) xslU - yeU

(prototypical image, as determined by algorithm, outlined in red) v

Subject to a similarity/distance metric: d(x.y) =1
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Ongoing & future directions
Compute similarity or “distance” between 2 images or 2 words using the same d(x, y) above.

- Train image models on decontextualized input images so that residuals from background context do not enter the learning signal.
- Explore a wider space of possible items.
- Explore whether different classes of item (e.g. animate vs inanimate) preserve their position across spaces better than others.
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Examining structure:

within a space
« compute the pairwise distances between all items in word- or image-space
* inter-object distances determine global structuring within the vector space

across spaces
» correlate pairwise distances between image and word space
» correlation implies conserved global structure across spaces learned by 2 unrelated
algorithms

Relating to learning in humans
- Define a neighbor in word or image space as any item whose distance z-score < -1
- Test whether images or words with more neighbors are later-learned
- Measure degree of overlap in image- and word-space neighbors (overlapping neighbors)
« Link to comprehension/production norms on WordBank [3]
- Comprehension norms: avg. percent of 8- to 18m.o. who understand each word
- Production norms: average percent of 16 to 30m.o who produce each word
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