

Research Questions:

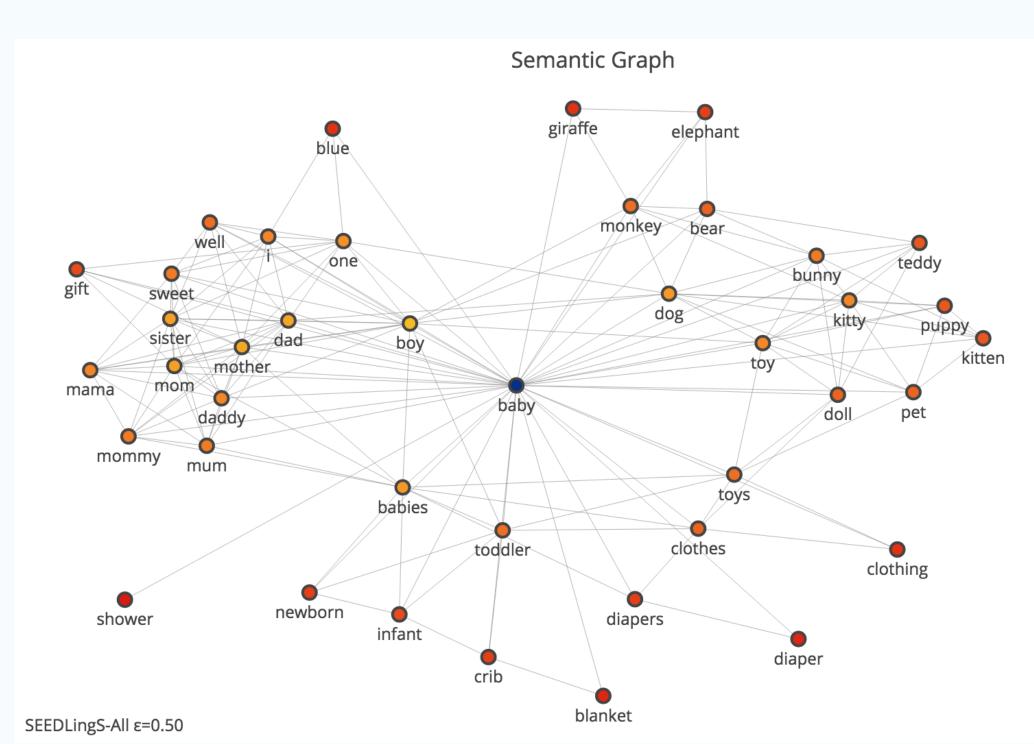
1) Do common semantic network properties *necessarily* stem from **incremental** growth? (preferential attachment vs. preferential acquisition)

2) Does a word's node degree *correlate with age of acquisition* in networks built using a static metric of semantic similarity (GloVe)

Background

Structure in Semantic Networks

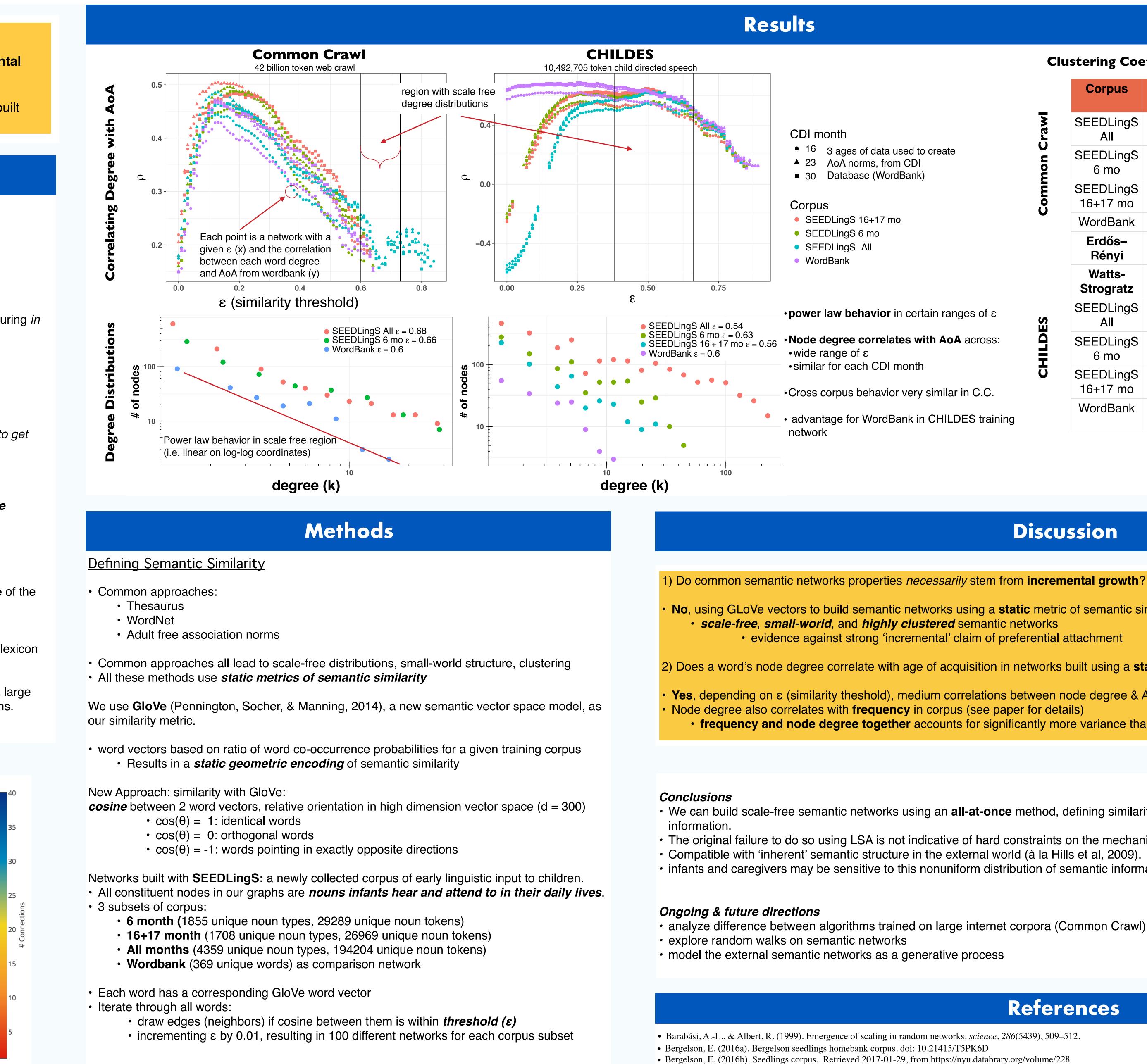
- Common structure observed across different semantic nets
 - scale free degree distributions [P(k) ~ k^{-a}]
 - small-world organization [L ∝ log N]
 - high clustering coefficients
- Incremental network growth proposed as the cause of scale free network structuring in general (Barabási & Albert, 1999),


common examples:

- world wide web
- social networks
- citation patterns in scientific publications

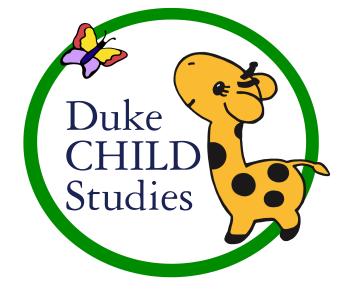
This incremental model uses preferential attachment: new nodes are more likely to get added to more connected nodes

- Incremental growth <u>assumed</u> to correspond to age of acquisition for words.
- Steyvers and Tenenbaum (2005): compared *incremental* networks vs. *all at once* networks (LSA, i.e. semantic vector space model)
- LSA Networks lacked common semantic net features
- taken as support for incremental growth *leading* to common net features
- Incremental models assume semantic similarity is *relative in time*
- newly learned word has different semantic neighbors as a function of the state of the lexicon during learning
- Hills et al. (2009): counterproposal: preferential acquisition.
- semantic structure in *environment* guides acquisition, not structure in existing lexicon
- i.e. the 'ground' of semantic similarity is independent of the learner


We use new generation all-at-once (i.e. non-incremental) networks (GLoVe), and a large new corpus of nouns heard by infants (SEEDLingS) to test limits of previous claims.

Sample Semantic Net for "baby"

Semantic Networks Generated from Early Linguistic Input


Andrei Amatuni and Elika Bergelson | Department of Psychology and Neuroscience, Duke University

- No, using GLoVe vectors to build semantic networks using a static metric of semantic similarity (i.e. non-incremental nets), we find: • scale-free, small-world, and highly clustered semantic networks • evidence against strong 'incremental' claim of preferential attachment
- 2) Does a word's node degree correlate with age of acquisition in networks built using a static metric of semantic similarity (GloVe)
- Yes, depending on ε (similarity theshold), medium correlations between node degree & AoA (Spearman's $\rho \sim 0.5$, p < 0.05) Node degree also correlates with **frequency** in corpus (see paper for details) • frequency and node degree together accounts for significantly more variance than either alone in predicting word production

- The original failure to do so using LSA is not indicative of hard constraints on the mechanisms responsible for structuring. · Compatible with 'inherent' semantic structure in the external world (à la Hills et al, 2009).
- infants and caregivers may be sensitive to this nonuniform distribution of semantic information (future work needed)

- Frank, M. C., Braginsky, M., Yurovsky, D., & Marchman, V. A. (2016). Wordbank: An open repository for developmental vocabulary data. Journal of child language
- Hills, T. T., Maouene, M., Maouene, J., Sheya, A., & Smith, L. (2009). Longitudinal analysis of early semantic net- works preferential attachment or preferential acquisition? *Psychological Science*, 20(6), 729–739. • Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. In *Empirical methods in natural language processing (emnlp)* (pp. 1532–1543).
- Steyvers, M., & Tenenbaum, J. B. (2005). The large-scale structure of semantic networks: Statistical analyses and a model of semantic growth. *Cognitive science*, 29(1), 41–78.

Clustering Coefficients and Average Shortest Path

	Corpus	ε (at peak ρ)	Clustering Coefficient	Avg. Path Length (L)
	SEEDLingS All	0.13	0.594	1.749
	SEEDLingS 6 mo	0.16	0.669	1.739
	SEEDLingS 16+17 mo	0.12	0.726	1.534
	WordBank	0.13	0.895	1.202
	Erdős– Rényi	-	0.049 random netw	1.950 vork baseline
	Watts- Strogratz	-	0.634 prototypical	3.013 small-world
	SEEDLingS All	0.52	0.273	4.971
	SEEDLingS 6 mo	0.52	0.264	5.614
	SEEDLingS 16+17 mo	0.49	0.266	4.961
	WordBank	0.26	0.479	1.866

Discussion

• We can build scale-free semantic networks using an **all-at-once** method, defining similarity in terms of a geometric encoding of distributional

• analyze difference between algorithms trained on large internet corpora (Common Crawl) and those that are child specific (CHILDES)

References