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Linking acoustic variability in the infants’ input to their early word production17

Research highlights18

• Talker variability shapes learning in the lab and is available in the real world, we ask19

whether variability predicts word learning in the real world20

• Acoustic measurements of words in infants’ input predicted when infants say those21

same words beyond the effects of frequency22

• Speech register also predicts when infants will say words, alongside effects of acoustic23

variability24

• Our results provide a deeper understanding of how sources of variability inherent to25

children’s input influence their learning and development26

Abstract27

Talker variability shapes how learning unfolds in the lab, and similar types of28

variability have been shown to be available to infants in the real world. Here, we ask whether29

talker variability also influences age of first production for common nouns, above and beyond30

the effects of frequency. Then, we ask whether these effects are redundant with effects of31

speech register. We predicted children’s month of first production using acoustic32

measurements for highly common nouns from a longitudinal corpus of North-American33

infants. In addition of frequency, variability in how words sound in 6-17mo’s input predicted34

when children said those same words. Further, while proportion of child-directed-speech also35

predicts month of first production, it does so alongside measurements of acoustic variability36

in children’s real-world input. Together, this adds to a growing body of literature showing37

that how children hear words influences learning both in the lab and in daily life.38
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Introduction39

The relationship between what children hear and their language development has been40

of interest to researchers for decades. Much of this research has focused on the quantity and41

quality of input, using metrics such as types and tokens, syntactic variability, and referential42

transparency (e.g. Huttenlocher, Waterfall, Vasilyeva, Vevea, & Hedges, 2010; Rowe, 2012).43

While these properties effectively describe some aspects of the input, they generally stop44

short of measuring the acoustic properties of speech, and how these may influence spoken45

word learning. Since acoustic variability has been shown to influence word learning in the lab46

(Bulgarelli & Bergelson, 2022, 2023; Galle, Apfelbaum, & Mcmurray, 2015; Hoehle, Fritzsche,47

Meb, Philipp, & Gafos, 2020; Rost & McMurray, 2009) and to be readily and similarly48

available to infants in the real world (Bulgarelli, Mielke, & Bergelson, 2021), the current49

manuscript tests whether infant’s own experiences with acoustic variability are related to50

their early word production. Put otherwise: can we link the acoustic variability with which51

infants’ hear words in daily life to when they start to say those same words?52

To date, research on the effects of talker variability on word learning has yielded mixed53

results. While initial studies with adults suggested that talker variability may be hard for54

learners (Mullennix, Pisoni, & Martin, 1989), studies with infants report that it can be55

helpful for generalization to new talkers (Bulgarelli & Bergelson, 2022) and during56

challenging word learning tasks (e.g. learning minimal pairs; Stager and Werker (1997); Galle57

et al. (2015); Hoehle et al. (2020)). At the same time, talker variability can be hard for58

infants under certain conditions. For example, talker variability resulted in 8-month-olds59

over-extending what should ‘count’ as an instance of a new word (Bulgarelli & Bergelson,60

2022); and made learning novel dissimilar-sounding words, (‘neem’ and ‘lof’, not minimal61

pairs) more challenging for 14-month-olds (Bulgarelli & Bergelson, 2023). Taken together,62

the literature suggests that while talker variability can be helpful under specific63

circumstances, it can also interfere with learning.64



LINKING VARIABILITY TO WORD PRODUCTION 4

All of the above studies were conducted in the lab and featured stimuli intended to65

minimize or maximize acoustic variability stemming from different talkers. In a recent66

corpus analysis, Bulgarelli et al. (2021) extracted tokens of highly frequent nouns from a67

longitudinal corpus of daylong recordings (baby, ball, book, water, dog), quantified the68

amount of acoustic variability infants heard, and related that to other input properties69

(e.g. number of tokens or talkers in the input). Results suggested that infants experienced70

similar acoustic variability in their day-to-day life as they do in the lab. Between-talker71

variability was modestly correlated with a variety of input properties; hearing more talkers72

overall and hearing a higher percentage of speech produced by children (relative to adults or73

electronics) each correlated with hearing more acoustic variability. Overall, these findings74

suggest that acoustic measurements of variability provide additional information about how75

children’s input varies beyond previously considered measures. But this work leaves open76

how this variability may connect to early production of these words, which we tackle here.77

Notably, there is some overlap in what characterizes child-directed speech (CDS78

hereafter) and high talker-variability (e.g. pitch range and duration variance), and CDS has79

been linked to improved word learning (Graf Estes & Hurley, 2013; Ma, Golinkoff, Houston,80

& Hirsh-Pasek, 2011). For example, Graf Estes and Hurley (2013) found that 17-month-old81

infants performed better on a word mapping task in the lab when hearing CDS, and82

properties of CDS in infant’s input at 7 months are related to infant’s vocabulary size at 283

years (Newman, Rowe, & Bernstein Ratner, 2016). Thus, a secondary question we consider84

is the separability of measures of talker variability and CDS in predicting early word85

production.86

In sum, research to date suggests that talker-based acoustic variability (1) influences87

word learning in the lab (sometimes helping and other times increasing difficulty), (2) is88

available to infants in their real world input, and (3) is not simply redundant with other89

descriptive properties (e.g. number of tokens, talkers). However, this leaves open how90

different aspects of talker-based acoustic variability in the input may influence which words91
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infants say and when. Further, CDS and talker-based acoustic properties are often conflated92

in prior work, leaving it an open question whether these represent the same source of93

variability in their effects on word learning. In what follows, we seek to link infants’94

experiences with highly frequent and early learned words to their own word production.95

Specifically, we first ask whether acoustic variability in infants’ own input for highly common96

nouns (from daylong home recordings) is related to the age of first production of those same97

nouns. Then, using a subset of our data, we assess whether our acoustic measures of talker98

variability are redundant with measures of CDS, and whether CDS provides further power in99

predicting early noun production.100

Methods101

We report on three types of data, all derived from the SEEDLingS corpus (Bergelson,102

2017), described below: 1) acoustic measurements of highly frequent and early learned words103

in infants’ input; 2) ratings of whether words were produced in child- or adult-directed104

speech, and 3) vocabulary data regarding which words infants themselves produce by 18105

months.106

Participants107

Participants were from the SEEDLingS dataset (Bergelson, 2017), a corpus of 44108

infants recruited for a year-long study of word learning, who were recorded monthly from109

6-17 months of age (23 males, 21 females). All infants were born full term (40 +/- 3 weeks),110

had no known hearing or vision problems, and were reported to hear at least 75% English.111

Forty-two of the infants were White, two were multiracial. Maternal education ranged from112

high school degree to advanced degree (high school degree: n=1; some college: n=3;113

associate or bachelor’s degree: n=18; advanced degree: n=22). This sample includes one pair114

of dizygotic twins; both are included. This was a convenience sample.115
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Corpus Recording and Initial Annotation Procedure116

Starting at 6 months and continuing for a year, families were audio-recorded once a117

month for a full day (up to 16h, using LENAs), and video recorded once a month for an hour118

(using head mounted cameras and a tripod); on separate days (see Bergelson, 2017;119

Bergelson, Amatuni, Dailey, Koorathota, & Tor, 2018 for data and description).120

Approximately 54 audio recorded hours and 12 video recorded hours for each child121

were annotated for instances of concrete nouns (based on the broader goals of this project).122

Each imageable concrete noun said directly to or near the target child was manually tagged123

by annotators, along with individual talker labels (see Bergelson et al. (2018); Bulgarelli and124

Bergelson (2019) report reliability for speaker tags was high, kappa = 0.93). Addressee was125

not initially coded.126

Dataset127

We identified 13 of the most frequent nouns across the entire corpus, which were128

“baby”, “ball”, “book”, “water”, “dog(gy)”, “hand(s)”, “car”, “hat”, “kitty”, “milk”, “nose”,129

“head”, and “mouth”. The initial dataset (before the exclusions described below) was 44669130

tokens of 13 words across 44 infants. Bulgarelli et al. (2021) report acoustic analyses for five131

of these (baby, ball, book, water, and dog(gy)). We extracted an audio-clip for each132

annotated noun instance based on its timestamp and a 0.5s buffer on each side. Research133

assistants transcribed these segments using Praat, and then we aligned the transcribed134

textgrids to the audio wav files using the Montreal Forced Aligner (McAuliffe, Socolof,135

Mihuc, Wagner, & Sonderegger, 2017). All force-aligned files were reviewed and alignment of136

the target words was adjusted as necessary. Lastly, we extracted the wav files containing the137

bare target words for each token of each target word for each participant.138

Acoustic measurements. We measured acoustic properties that are not lexically139

contrastive in English. These measurements included mean pitch, median pitch, max pitch,140
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mean pitch slope, duration, and harmonics-to-noise ratio. Each of these measurements was141

conducted on the whole word using an automated approach in PraatR (Albin (2014); see142

script on OSF for details about how each measurement was calculated), see Bulgarelli et al.143

(2021) for additional details.144

Excluding unusable tokens. Following previous research (Bulgarelli et al., 2021),145

we excluded tokens that would incorrectly effect our measurements of variability. While we146

don’t want to exclude all extreme values (e.g. ones that might be considered outliers)147

because we are interested in measuring the variability infants hear, we excluded 6424 tokens148

that had consecutive pitch measurements that differed by more than an octave (double or149

half the previous pitch), as such jumps in pitch are classic signatures of pitch-tracking errors150

and are unlikely to occur in natural speech.151

We also excluded 3281 tokens that included sounds in addition to the target word, such152

as background noise from other speakers, animals, or toys (among others, Bulgarelli et al.153

(2021) report kappa = 0.65 for this exclusion criteria). Next, we excluded 2026 tokens with a154

harmonics-to-noise ratio <1. While this cutoff is not intrinsically meaningful, this excludes155

the small tail of tokens with a relatively high ratio of aperiodic noise relative to periodic156

speech. Lastly, we excluded 461 tokens for which acoustic measurements could not be157

measured; e.g. when pitch information was missing. After all exclusions, the current dataset158

includes 32477 tokens, see Supplemental Table for breakdown by word.159

Data aggregation. Our variability analyses combined tokens heard by all speakers160

for each infant, using the standard deviations for each acoustic measurement for each161

word. See Supplementals for means for all words.162

Ratings of Child-directed speech. As the SEEDLingS corpus was not annotated163

for likely addressee of each noun instance, we took a citizen science approach to gathering164

ratings of CDS. Of the 44 participants, 32 gave permission for short clips of their recordings165

to be used on public-facing platforms. For these, we submitted the audio clips (including166
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context) to a web-based citizen science platform called Zooniverse. For each clip, annotators167

on Zooniverse were notified of the target word they were listening for (one of the 13 listed168

above), and asked to classify it as: a) adult-directed speech, b) child-directed speech, c)169

utterances containing more than one instance of the target word, and d) junk (noise, baby170

sounds, not containing the target word). For clips that were marked as containing more than171

one instance of the target word, annotators then rated each instance of the target word as a)172

adult-directed, or b) child-directed. Most of the instances of a word were rated 7 times173

(mean = 6.99), but we included ratings for any that were rated at least 5 times. Generally, a174

given instance was tagged by a set of unique annotators, however since participation was175

anonymous we cannot verify that none were tagged by the same person twice.176

Raters on Zooniverse rated 34280 tokens of these 13 words from 32 subjects. After177

annotations were complete, we considered a token of a word as being produced in CDS or178

ADS if it was rated as such by >70% of annotators. Instances for which there wasn’t this179

strong level of agreement were excluded from the CDS calculations. 62% of instances reached180

this threshold and were included.181

Vocabulary data. In addition to the audio and video recordings, caregivers were182

asked to fill out monthly MacArthur-Bates Communicative Development Inventories183

(MCDIs) from 6 to 18 months, providing parent-reported vocabulary data for each child184

every month. For each of our target words, we computed the age at which each child was185

first reported to produce that word, and used that as our age-of-acquisition measure,186

hereafter called MonthFirstProduction, see Table 1.187

Results188

Predicting age of first production based on word-specific input189

Our first set of analyses tests whether the MonthFirstProduction of a specific word is190

related to children’s own experiences with that word. Given the well-documented effects of191
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Table 1

Word-level properties in the corpus. Columns with sd refer to average standard deviations,

which serve as our measure of variability; hnr = harmonics-to-noise ratio, meanpitch =

mean pitch, slope = pitch slope. cds column reports the percent of word tokens identified as

child-directed-speech for a subset of 32/44 participants; the ’all’ row averages across all words.

word %produce MonthFirstProd frequency sd.hnr sd.meanpitch sd.duration sd.slope %CDS

baby 40.91 15.28 86.91 5.06 86.67 232.45 403.06 80.44

ball 79.55 14.20 60.50 4.35 86.15 166.90 432.24 91.09

book 59.09 14.96 73.66 3.88 97.89 126.40 711.79 87.43

car 40.91 15.72 41.30 4.35 85.14 166.52 406.44 51.26

dog 68.18 13.63 72.45 4.31 87.01 175.32 407.36 83.55

hand 15.91 16.43 82.66 4.93 81.47 157.76 356.01 84.07

hat 31.82 16.14 41.16 4.10 92.94 126.74 514.95 86.43

head 18.18 16.12 51.50 4.63 84.09 196.81 476.08 63.66

kitty 38.89 15.43 39.19 4.40 79.26 161.39 480.48 92.83

milk 46.51 15.55 41.98 4.49 81.63 132.45 462.20 73.71

mouth 22.73 16.40 51.36 4.79 80.88 134.58 396.37 87.36

nose 43.18 15.89 42.25 5.60 84.45 211.71 368.86 90.51

water 40.91 15.44 61.23 4.27 70.55 153.27 330.57 72.64

all 42.10 15.16 57.68 4.55 84.55 164.90 441.45 80.19

frequency on language development (e.g. Ambridge, 2015), we start with a baseline model192

that predicts MonthFirstProduction based on the (log-transformed) frequency with which193

that word was heard by that child over the course of the sparsely sampled year:194

MonthFirstProduction ∼ LogFrequency + (1|subj) + (1|word)

Fixed effects in the baseline model accounted for 6.8% of the variance (with random195

effects, the model accounted for 51% of variance), and included a significant effect of196

frequency (t(229.37) = −4.65, p < .001, d = -0.61), such that hearing a word more often197
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resulted in saying it earlier.198

Next, we add our acoustic variability metrics (standard deviations of mean pitch, max199

pitch, median, duration, pitch slope, and harmonics-to-noise ratio), and their interactions200

with frequency to the model. We also include a set of descriptive properties (how many201

talkers produced the word, and proportion of tokens from electronics and other children),202

and word length properties (number of phonemes and number of syllables), which could203

predict how easy a word is to say in the first place. Since many of these are highly correlated204

with each other (e.g. mean pitch and median pitch), we conduct backwards stepwise model205

selection with AIC (e.g. Yamashita, Yamashita, & Kamimura, 2007) to determine the best206

model for the data. Using this approach, the best fit model is:207

MonthFirstProduction ∼ LogFrequency+MeanpitchV ariability+MaxpitchV ariability+
208

DurationV ariability + LogFrequencyxMeanpitchV ariability+
209

LogFrequencyxDurationV aribility + (1|subj) + (1|word))

The fixed effects in this model accounted for 12.4% of the variance and this model was210

a significantly better fit for the data than the baseline model (p = 0.01), see Table 2 and211

Figure 1 for model comparison.212

There was a significant effect of frequency (t(213.34) = −2.20, p = .029, d = -0.30),213

such that hearing a word more often led to an earlier month of first production, as well as a214

significant effect of max pitch variability (t(215.53) = −2.09, p = .038, d = -0.28), such that215

hearing a word more variably in max pitch (holding all other things constant) resulted in an216

earlier month of first production. There was also a significant interaction between frequency217

and mean pitch variability, (t(215.65) = 2.48, p = .014, d = 0.34) such that higher frequency218

words that infants heard with less variable mean pitch were produced by them earlier. For219

instance words with a log frequency of 2.5 that were said 1SD less variably in mean pitch220
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Table 2

Model comparison table showing (1) baseline model with just frequency, (2) best model based

on backward model selection. The fixed effects in Model 1 account for 6.8 perfect of the

variance in the baseline AoA model, in Model 2 they account for 12.4 perfect

Dependent variable:

MonthFirstProduction

Baseline model Best fit model

Frequency −1.8∗∗∗ (0.4) −3.0∗∗ (1.4)

Meanpitch Variability −0.04 (0.03)

Maxpitch Variability −0.02∗∗ (0.01)

Duration Variability 0.01∗ (0.01)

Frequency × Meanpitch Variability 0.04∗∗ (0.02)

Frequency × Duration Variability −0.01∗∗ (0.01)

Constant 18.7∗∗∗ (0.7) 21.8∗∗∗ (2.2)

Observations 237 237

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 1 . Beta estimates (change in months) and standard errors for frequency in both

baseline model and best fit model (left; baseline model in pink, best fit in blue) and additional

predictors in best fit model (right) for the full dataset (44/44 Ss). Frequency, Maxpitch

Variability, Frequency × Meanpitch Variability, and Frequency × Duration Variablity were

individually significant predictors. Higher negative betas for these predictors indicate earlier

MonthFirstProduction. N.B. y-axes differ across facets. The fixed effects account for 6.8% of

the variance in the baseline AoA model and 12.4% in the best fitting model.
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Figure 2 . Visualization of predicted values for significant interactions. Left: Interaction

between frequency and meanpitch variability. Right: Interaction between frequency and

duration variability. Lines represent the predicted data for the mean variability value, +/-

1SD.

were predicted to be produced 2.45 months sooner than more frequent words heard 1SD221

more variably in mean pitch. In contrast, words with a log frequency of 0.5 that were said222

1SD more variably in mean pitch were predicted to be produced 1.06 months sooner than223

lower frequency words heard 1SD less variably in mean pitch, see Figure 2.224

This model also included an interaction between frequency and duration variability225

(t(208.73) = −2.16, p = .032, d = -0.30) such that more frequent words infants heard said226

more variably in duration were produced by them earlier and vice versa. For instance, more227

frequent words that were said 1SD more variably in duration were predicted to be produced228

1.91 months sooner than more frequent words heard less variably in duration. In contrast,229

less frequent words that were said 1SD less variably in duration were predicted to be230

produced 1.18 months sooner than lower frequency words heard 1SD more variably in231

duration, see Figure 2.232
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The main effects of mean pitch variability and duration variability were not significant233

on their own , all ps > .05, but were retained based on our model selection approach (see234

above).235

This first set of analyses suggests the variability with which infants hear words is236

related to when they produce those words in the real world. We found that hearing a word237

more, and hearing it more variably in mean pitch, max pitch and duration predicted when a238

word was first produced. Children who heard words more said them earlier, and broadly put,239

hearing words more variably also resulted in earlier production. The exact pattern of the240

interaction between frequency and these acoustic variables differed slightly as a function of241

whether the word is higher or lower frequency (among our already high frequency words).242

The role of child-directed-speech243

One possibility is that the effects reported above are largely due to speech register, as244

CDS is often characterized by higher mean and max pitch and changes in word duration. As245

these are the variables that were found to be significantly related to word production, we246

next ask whether including the proportion of CDS for a given word as a predictor in the247

models would explain further variance, or better account for variance otherwise explained by248

our acoustic variability metrics.249

This second set of analyses is conducted on a subset of the original dataset (on which250

we first rerun our original models before considering CDS, see below), due to parental251

permissions. Ratings revealed that 80% of the tokens were produced in CDS, ranging from252

0%-100% of tokens of any given word for any participant.253

Correlations between acoustic measurements and child-directed-speech.254

We first ask whether proportion of CDS was related to the variability with which the words255

were said. That is, did children who heard more CDS also hear more variability in e.g. mean256

pitch? Correlations between proportion of CDS and each of our acoustic variables are in257
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Table 3

Correlation (Kendall’s tau) between proportion of child-directed-speech and each acoustic

variability metric.

Acoustic measurements

correlation meanpitch maxpitch median slope hnr duration

child-directed-speech 0.03 0 0.05 0.05 0.13** 0.01
a **significant after Bonferroni-correction for multiple comparisons (n=6, new p

threshold = .008), *p<.05.

Table 3. Only the correlation between proportion of CDS and harmonics-to-noise ratio258

variability withstood correction for multiple comparisons (τ = .13, z = 3.92, p < .001), such259

that hearing a higher proportion of CDS also resulted in hearing more variability in260

harmonics-to-noise ratio. Nonetheless, this correlation was small in magnitude, suggesting261

that the proportion of CDS is not a simple redescription of how acoustically variable the262

speech sounds.263

Non-contrastive acoustic measurements and child-directed speech. We now264

ask whether the proportion of CDS for a word in the input helps predict when a child starts265

saying that word in this dataset. We first conduct our model selection process again to find266

the best fit model with our acoustic variability metrics on this subset of the data, then we267

add CDS as a predictor the model could choose and see whether that changes the best fit268

model.269

The best fitting model for this subset of the data was identical to the model identified270

for the full dataset:271

MonthFirstProduction ∼ LogFrequency+MeanpitchV ariability+MaxpitchV ariability+
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272

DurationV ariability + LogFrequencyxMeanpitchV ariability+
273

LogFrequencyxDurationV aribility + (1|subj) + (1|word))

The fixed effects in this model accounted for 12.1% of the variance and all effects went274

in the same direction as the model with all participants described above. This model was a275

significantly better fit for the data relative to a model on the subset of the data with just276

frequency (p = .002). Model estimates can be found in Table 4.277

We next add proportion of CDS and its interaction with frequency to the model278

selection process. The best fit model was as follows:279

MonthProduction ∼ LogFrequency + DurationV ariability + HnRV ariability+
280

PropCDS + LogFrequencyxPropCDS + LogFrequencyxDurationV ariability+
281

LogFrequencyxHnRV ariability + (1|subj) + (1|word))

The fixed effects in this model accounted for 13.2% of the variance and this model was282

a significantly better fit for the data relative to the baseline model (p = .001), see Table 4283

and Figure 3.284

This model included a significant effect of harmonics-to-noise ratio (HnR) variability,285

(t(163.58) = −1.99, p = .048, d = -0.31) such that hearing a word less variably in286

harmonics-to-noise ratio resulted in an earlier month of first production. There was also a287

significant interaction between frequency and duration variability (t(164.44) = −2.09,288

p = .038, d = -0.33). Consistent with the model on the full dataset, more frequent words289

(e.g. ones with a log frequency of 2.5) that were heard 1SD more variably in duration were290

predicted to be produced 2.44 months sooner than more frequent words heard 1SD less291

variably in duration. Less frequent words (e.g. ones with a log frequency of 0.5) that were292
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Figure 3 . Beta estimates (change in months) and standard errors for models of the subset of

data that includes CDS measures (32/44 infants). Left to right each panel shows frequency,

pitch and duration, harmonics-to-noise (HnR), and CDS estimates, respectively. Color

indicates which model the terms occurred in (pink = baseline, green = best fitting model

without CDS, blue= best fitting model with CDS). Higher negative betas indicate earlier

MonthFirstProduction. N.B. y-axes differ across facets. The fixed effects in the baseline AoA

model for the CDS subset accounts for 4.8%, the fixed effects in the best fit model without

CDS account for 12.1% of the variance; and for the best fit model with CDS account for

13.2% of the variance.
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Table 4

Model comparison table showing, for the subset of data with CDS ratings (1) baseline model

with just frequency, (2) best model based on backward model selection, and (3) best model

with proportion of CDS. Model 1 accounts for 4 percent of the variance, Model 2 accounts for

12.1 percent, and Model 3 accounts for 13.2 percent

Dependent variable:

MonthFirstProduction

Baseline model Best fit w/o CDS Best fit w/CDS

Frequency −1.4∗∗∗ (0.4) −1.9 (1.4) −0.4 (1.7)

Duration Variability 0.02∗ (0.01) 0.02 (0.01)

Maxpitch Variability −0.02∗∗ (0.01)

Meanpitch Variability −0.04 (0.03)

HnR Variability −1.5∗∗ (0.8)

Proportion CDS 3.7 (2.8)

Frequency × Duration Variability −0.01∗∗ (0.01) −0.01∗∗ (0.01)

Frequency × Meanpitch Variability 0.04∗∗ (0.02)

Frequency × HnR Variability 1.1∗∗ (0.5)

Frequency × CDS −3.8∗∗ (1.9)

Constant 18.0∗∗∗ (0.8) 20.5∗∗∗ (2.3) 18.0∗∗∗ (2.5)

Observations 187 187 187

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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said 1SD less variably in duration were predicted to be produced 1.25 month sooner than293

lower frequency words heard 1SD more variably in mean pitch, see Figure 4.294
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Figure 4 . Visualization of predicted values for significant interactions. Left: Interaction

between frequency and meanpitch variability. Right: Interaction between frequency and

duration variability. Lines represent the predicted data for the mean variability value, +/-

1SD.

The model also included a significant interaction between frequency and295

harmonics-to-noise variability (t(163.12) = 2.45, p = .015, d = 0.38). That is, more frequent296

words that were said 1SD less variably in harmonics-to-noise ratio were predicted to be297

produced 2.40 months sooner than frequent words produced 1SD more variably in298

harmonics-to-noise ratio. Less frequent words that were produced 1SD more variably in299

harmonics-to-noise ratio were predicted to be produced 1.75 months sooner than lower300

frequency words produced 1SD less variably in harmonics-to-noise ratio. Lastly, there was a301

significant interaction between frequency and proportion of CDS (t(150.03) = −2.05,302

p = .042, d = -0.33). In this case, more frequent words that were produced in CDS more303

often were predicted to be produced 2.12 months sooner than those produced in CDS 1SD304
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less often, while lower frequency words that were produced in CDS 1SD less often were305

predicted to be produced 0.64 months sooner than those produced in CDS more often.306

We next compared the best fit model with and without CDS (which are not nested) via307

AIC. The AIC value for the model without CDS is 822.62, while for the model with CDS is308

796.72, suggesting the addition of CDS improves model fit overall.309

Discussion310

The current study tested whether the acoustic variability with which children hear311

words in everyday life is related to their productions of those same words. We found that it312

was: hearing words more variably and in child-directed-speech influenced when those words313

were first produced.314

Our analyses were built on a baseline model that include frequency for each word for315

each child, from a yearlong corpus. As predicted, hearing a word more resulted in producing316

that word earlier; frequency accounted for ~7% of the variance in month of first production.317

This is consistent with a well established effect of frequency, wherein earlier learned words318

tend to also be more frequent (see Ambridge, 2015; Frank et al., 2020; Goodman, Dale, & Li,319

2008). These previous analyses typically calculate word frequency on a more global level -320

e.g. how frequent is the word ‘baby’ in speech to children in English? We build on this,321

showing that this holds on an individual level: how often a specific child heard the word322

‘baby’ is predictive of when that same child produces it (see also Swingley & Humphrey,323

2018).324

Across analyses, we also found that the effects of variability varied, sometimes325

predicting an earlier and sometimes a later month of first production. Across all analyses,326

hearing more variability in duration resulted in producing the word earlier. The patterns for327

pitch-based measurements were less consistent. While more variability in max pitch resulted328

in earlier productions, variability in mean pitch interacted with frequency such that for329
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higher frequency words, less mean pitch variability predicted earlier learning. In our analysis330

including proportion of CDS, we also found effects of CDS as well as Harmonics-to-noise331

ratio. In this case, higher frequency words produced with more variable harmonics-to-noise332

ratio were predicted to be produced later. On the other hand, higher frequency words that333

were produced in CDS more often were predicted to be produced sooner. This effect of CDS334

is consistent with research showing that acoustic properties of mother’s speech in CDS335

predict vocabulary growth between 18 and 24 months (Han, De Jong, & Kager, 2023), and336

suggests that in addition to drawing infants’ attention to speech (as evidenced by infant’s337

overall preference for CDS; Cooper and Aslin (1990); Consortium (2020)), CDS also shapes338

children’s word learning on a word-by-word basis (see also Jones, Cabiddu, Barrett, Castro,339

and Lee (2023)).340

Why would these effects depend on frequency, and why would more variability only341

predict earlier production sometimes? First, we highlight that all the words used here are342

incredibly high frequency, within our corpus and generally in spoken English (see Perry,343

Perlman, & Lupyan, 2015). We cannot speak to how this would play out with truly low344

frequency words (which infants produce extremely rarely). Speculating based on the variable345

frequency of words in our corpus and across our participants, higher frequency may, for346

instance, give children more opportunities to make inferences about words on various levels347

of linguistic representation (how they sound, what they mean, etc.).348

It may also be easier for infants to abstract across some acoustic properties, relative to349

others, in order to learn the bounds of how a word should be said. For example, in some350

contexts, infants do not recognize words that are presented in a different pitch (Singh, White,351

& Morgan, 2008), suggesting that they attend to pitch information as a cue to word identity.352

Thus, high pitch variability may be salient for infants, particularly for frequent words that353

are also more likely to be produced across talkers and contexts. Similarly, more variability in354

harmonics-to-noise ratio, which captures aspects of voice quality, may overlap with355

differences in affect, which have also been shown to influence word recognition (Singh, 2008).356
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In contrast, our results are compatible with the idea that unlike pitch, duration may be357

less salient for infants, or easier for them to abstract across tokens. While variation in358

duration can mark lexical stress and therefore carry meaning (PERfect vs. perFECT), it359

does so less consistently. If infants are sensitive to this, they may factor it in as part of e.g. a360

cue-weighing process (as proposed by e.g. Apfelbaum & Mcmurray, 2011; Hoehle et al.,361

2020), determining relevant parameters with increased exposure. Thus, we suggest that more362

experience may be required for abstracting across variability in pitch and harmonics-to-noise363

ratio relative to variability in duration. We look forward to future research directly testing364

this possibility. Either way, the current study suggests that not only do infants overcome a365

possible challenge posed by variability in duration, but they harness it during the word366

learning process.367

While our models including acoustic variability and CDS accounted for twice as much368

variance as frequency alone, the vast majority of variance predicting when infants would369

produce these high frequency nouns remained unexplained. What else may contribute to370

when a word is first produced? Frank et al. (2020) found that, cross-linguistically, words are371

more likely to be learned if they are higher in concreteness (e.g. dog vs. happy), if they372

appear in shorter sentences, or in isolation. Roy, Frank, DeCamp, Miller, and Roy (2015) find373

similar results for a single child followed longitudinally - more frequent words, shorter words374

and words heard in shorter sentences tended to be produced earlier. More recent research375

has found that wordform variability for the same lemma (e.g. dog, doggy) also contributes to376

word learning (Moore & Bergelson, 2021), and differently so for higher and lower frequency377

words. Meaning and topic also certainly plays a role in what words children produce. For378

instance, across 15 languages, the first 10 words produced by children consist primarily of379

important family members, routines, or sounds (Frank et al., 2020). Incorporating these380

factors alongside acoustic variability is an exciting future direction for this work.381

Our findings highlight that the acoustic variability infants hear in their input, on an382

individual level, is an important aspect to consider in our theories of language development383
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and word production in particular. Of course, our findings focus on speech input in384

monolingual English-speaking homes, with typically developing infants. The extent of385

acoustic variability children hear is likely to vary cross-linguistically, and across contexts386

with more speakers of different ages. Future research will need to explore to what extent387

these findings generalize across linguistic communities. Nonetheless, our acoustic variability388

metrics combined accounted for almost as much variance as frequency alone in predicting389

when infants would produce specific words. Furthermore, when measurements of CDS are390

included, word learning was best explained by both the speech register and acoustic391

variability with which that word was heard. While it is perhaps unsurprising that we are392

unable to factor in all the sound-, meaning-, and individual-specific-properties that may393

predict the production of a given word, it is all the more meaningful that relatively low-level394

acoustic properties sampled from ~70 hours of each infant’s input across a year have a395

measurable effect on when a given child produced specific words. While the exact mechanism396

by which different sources of variability shape learning remains an open question, acoustic397

variability may shape infant’s expectations about how a word can sound, which in turn may398

drive their earliest efforts to produce these words themselves.399
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