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Language is a universal human ability, acquired readily by young
children, who otherwise struggle with many basics of survival. And
yet, language ability is variable across individuals. Naturalistic and
experimental observations suggest that children’s linguistic skills
vary with factors like socioeconomic status and children’s gender.
But which factors really influence children’s day-to-day language use?
Here we leverage speech technology in a big-data approach to report
on a unique cross-cultural and diverse data set: >2,500 day-long,
child-centered audio-recordings of 1,001 2- to 48-month-olds from
12 countries spanning 6 continents across urban, farmer-forager,
and subsistence-farming contexts. As expected, age and language-
relevant clinical risks and diagnoses predicted how much speech
(and speech-like vocalization) children produced. Critically, so too
did adult talk in children’s environments: Children who heard more
talk from adults produced more speech. In contrast to previous
conclusions based on more limited sampling methods and a different
set of language proxies, socioeconomic status (operationalized as
maternal education) was not significantly associated with children’s
productions over the first four years of life, and neither were gender
or multilingualism. These findings from large-scale naturalistic data
advance our understanding of which factors are robust predictors of
variability in the speech behaviors of young learners in a wide range
of everyday contexts.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

infancy | human diversity | language | socioeconomic status | speech

Typically-developing children readily progress from coos to1

complex sentences within just a few years, leading some to2

hypothesize that the universal language abilities of humans3

develop uniformly, with only incidental effects of individual- or4

group-level variation (1). And yet, studies using a variety of5

proxies for language development find some evidence of such6

variation in early language skills, with differences reported7

between girls and boys (2), as well as those raised in socioeco-8

nomically privileged compared to disadvantaged households9

(3, 4).10

However interesting, these studies tend to rely on Western-11

centric samples and methods, and may not reflect everyday12

language use in children. Moreover, prior work often stops13

after only considering individual predictors in a binary way14

(i.e. do they significantly impact language development or15

not), while failing to ask the more informative question of how16

large their relative impact is (5), especially in freely-occurring,17

everyday speech behavior.18

Recent research on mice and whales shows the promise of19

machine learning for examining everyday animal behavior (6,20

7). We leverage advances in wearables and machine-learning- 21

based speech technology to catalyze a similar breakthrough in 22

language development research. Our dataset is comprised of 23

>40,000 hours of audio from >2,500 days in the lives of 1,001 24

2- to 48-month-olds from 6 continents and diverse cultural 25

contexts (Figure 1). Within this dataset, we focused on the 26

amount of speech or speech-like vocalization young children 27

produce in their everyday life. Critically, these automatically- 28

extractable “quantity” measures correlate robustly with gold- 29

standard “quality” measures of children’s language skills and 30

knowledge, like vocabulary estimates (see SI1D for relevant 31

evidence) (4). 32

We query and compare the effects of two types of factors. 33

First, there are factors with undeniable effects on early lan- 34
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guage production, namely, child age and language-relevant35

clinical risks and diagnoses. Second, there are individual- and36

family-level factors that are reported to correlate with vari-37

ability in early language skills: socioeconomic status (SES;38

operationalized here as maternal education; SI2B), gender,39

language input quantity, and multilingual background. Be-40

cause small and homogeneous samples make universal claims41

more questionable, a key novel contribution of this work is its42

benchmarking of the level of stability and variability of every-43

day language use in a heterogeneous, richly diverse participant44

sample.∗45

Measuring Diverse, Real-life Language Use. Language skills46

and knowledge are not directly observable. As a result, all47

studies use a proxy when estimating them in individual chil-48

dren. These proxies have variable validity and predictive power49

relative to other measures, both concurrently and predictively,50

and likely vary in the extent to which they reflect children’s51

everyday language behavior. For instance, parental report52

measures are indirect and—especially for receptive knowledge—53

can be difficult for caretakers to estimate (9), even in relatively54

homogeneous Western-centric contexts.55

Here, we adopt a very different approach. We employed56

the LENA™ system, which captures what children hear and57

say across an entire day through small wearable recorders58

(10); this ecologically-valid sampling method reduces observer59

effects relative to, e.g., shorter video recordings (11). The60

LENA™ system uses standardized algorithms that estimate61

who is speaking when, alongside automated counts of adult and62

child linguistic vocalizations (4) (see definition and validation63

in SI1C:E). The resulting LENA™ measures correlate with64

and predict other measures of language skills in children with65

and without clinical risks or diagnoses, as revealed by manual66

transcriptions, clinical instruments, and parent questionnaires67

(12, 13). We use LENA™’s validated, automated estimates68

to derive our measures of everyday language use: adult talk69

and child speech (see detailed motivation in SI3B). We define70

child speech as the quantity of children’s speech-related vo-71

calizations (e.g., protophones (14), babbles, syllables, words,72

or sentences, but not laughing or crying) per hour, and adult73

talk as the number of near and clear vocalizations per hour74

attributed to adults (both as detected by LENA™’s algorithm;75

see Methods). Assuaging concerns that these measures are76

merely capturing chattiness or repetition, both have a ≥ .777

correlation with measures of lexical diversity and language78

“quality”: our child speech measure correlates with vocabulary79

in an independent sample, and the adult talk measure corre-80

lates with the number of word types from manual transcription81

in a subset of the data (SI1D).82

Capitalizing on this standardized and deidentified numeric83

output, we solicited LENA™ datasets that researchers had84

previously collected to study mono- and multilingual children85

(i.e. those learning >1 language) in urban, farmer-forager,86

and subsistence-farming contexts worldwide (Figure 1). This87

resulted in a dataset reflecting the state of current knowledge88

in ecologically-valid speech samples from children’s daily lives89

(SI3A; see Methods for more sample details).90

∗While these data collectively span living circumstances, geography, and family structure, some data
donors were concerned that highlighting differences when minoritized communities are involved
poses ethical challenges, in terms of honorable representation and potential harm. Individual data
stewards are actively engaging in richer descriptions of included samples (see SI5), which may
enable future work on meaningful population-level differences (e.g., 8).

The dataset includes children from wide-ranging SES back- 91

grounds, based on maternal education levels spanning from no 92

formal education to advanced degrees (SI2B). This SES proxy 93

was selected not only because it was available in all 18 corpora 94

(only 3 had alternative SES proxies), but most importantly 95

because it is the most commonly employed SES proxy in lan- 96

guage acquisition research, as established in meta-analyses (15, 97

16). This allows our findings to inform ongoing discussions. 98

Theories of how SES relates to children’s language development 99

have proposed a wide range of pathways in which maternal 100

education is predictive of children’s language experiences, in- 101

cluding the connection between maternal education and the 102

tendency to employ verbal over physical responsiveness (17), 103

the diversity in mothers’ vocabulary (18), and the frequency of 104

verbally-rich activities (19). Maternal education also correlates 105

highly with other SES proxies (e.g. r=.86 in a study of children 106

growing up in 10 European or North American countries, 20), 107

suggesting it may also indirectly pick up on other pathways 108

linking SES to language development, through e.g. differential 109

access to resources and nutrition, or exposure to stress perina- 110

tally (21). At the same time, we recognize that comparing a 111

variable like education across countries, although commonly 112

done (22), is not straightforward. Therefore, we supplement 113

our pre-registered approach with numerous exploratory checks 114

and analyses examining alternative implementations (SI3G:H 115

described further below). 116

Crucially, by including children aged 2 to 48 months, we 117

span a wide range of linguistic skills, allowing us to better 118

capture the effects of our variables over a broad span of devel- 119

opment within our socio-culturally and geographically broad- 120

ranging participants. We also include children with a variety 121

of diagnoses of language delays and disorders, as well as those 122

at high risks for them (see Methods & SI2A for definitions and 123

detailed justification). Such children’s language development 124

is by definition non-normative. Thus, age and non-normative 125

status provide useful yardsticks for considering the significance 126

and effect size of other child- and family-level factors (SES 127

through maternal education, child gender, mono- vs. multilin- 128

gual status, and how much adults talk to and around the child). 129

That is, if a factor (e.g., gender) has an effect far smaller than 130

that of age or non-normative development, it would suggest 131

that individual differences within it are relatively limited in 132

their connection to everyday language use. If the effects are 133

comparable in size, it would instead suggest that the amount of 134

speech humans produce in everyday interactions is undergirded 135

by substantial and structured individual differences, rather 136

than striking uniformity. Given that effects could vary as a 137

function of child age, we make sure to include key interaction 138

terms. For instance, we can expect age to interact with adult 139

talk if (as anticipated) older children are more sensitive to 140

adults’ talking to them than younger ones. 141

Predicting Children’s Speech Production. We employed a 142

hypothesis-testing approach: In a two-step preregistration, 143

we first established exploration and confirmation data subsets 144

(see Methods and SI3A for detailed explanation, and SI3D:E 145

for the procedure used to derive pre-registered hypotheses 146

and analyses). We then leveraged the held-out confirmation 147

subset to answer our key question: How well do specific 148

individual- and family-level factors predict variation 149

in how much speech young children produce? At stake 150

in these analyses is whether systematic differences in children’s 151
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DRAFTFig. 1. Geographical location, primary language, number of children (Nchild), number of recordings (Nrec) and data citation for each corpus.

Table 1. Model results predicting child speech. q-values
show FDR-corrected p-values.

β SE q

Intercept 0.109 0.128 .681
Child Gender(Male) 0.026 0.051 .852
SES(<H.S.(1)) 0.001 0.111 .991
SES(H.S.(2)) -0.033 0.115 .932
SES(B.A.(4)) -0.064 0.079 .681
SES(>B.A.(5) -0.002 0.090 .991
Control -0.085 0.029 .035 *
Norm -0.220 0.087 .036 *
Adult Talk 0.260 0.037 <.001 *
Age 0.647 0.024 <.001 *
Mono 0.045 0.095 .852
Norm × Adult Talk -0.005 0.063 .991
Norm × Age -0.217 0.051 <.001 *
Adult Talk × Age 0.125 0.022 <.001 *
Adult Talk × Mono 0.092 0.072 .45
Mono × Age -0.048 0.056 .681
Norm × Adult Talk × Age 0.019 0.043 .852
Mono × Adult Talk × Age 0.137 0.065 .094

Note. Betas show deviation from the follow-
ing baseline levels: Child Gender: female; SES:
some university(3); Norm: Norm(ative devel-
opment); Mono: Mono(lingual). SES = child
SES based on maternal education (<H.S.(1) =
less than high school, H.S.(2) = high school,
B.A.(4) = college degree, >B.A.(5) = advanced
degree); Control = overlap rate control; Adult
Talk = adult vocalization count rate.

lives have measurable links to their language production, and 152

if so, what the strength of these relationships is both overall, 153

and in relation to one another (see Table 1 for results†). 154

As expected, we found that older children produced more 155

speech than younger ones (ß=0.647, SE=0.024). Children 156

with non-normative development produced less speech than 157

children with normative development (ß=-0.22, SE=0.087)‡, 158

an effect that strengthened with age (ß=-0.217, SE=0.051; see 159

Figure 2B). This is expected because for some groups in our 160

non-normative subset (e.g. those with familial risk of a speech 161

impairment) older children are more likely to have an actual 162

diagnosis (as opposed to risk factor) than younger ones (see 163

SI2A for details on non-normative classification). 164

Our results further revealed that young children’s speech 165

production correlated with the amount of adult talk they heard 166

(ß=0.26, SE=0.037). This correlation strengthened with age 167

(ß=0.125, SE=0.022; see Figure 2A), perhaps because variation 168

in adult talk rate has less effect on infants (whose early babbles 169

occur frequently even when infants are alone, 14). The effect 170

of adult talk is a substantial one. Taking the effects of age and 171

normativity as convenient (but unrelated) gauges for what 172

counts as a considerable effect, we see that the effect size of 173

adult talk is about a third of that for age and similar to that 174

for normativity (adult talk: 0.26; interaction adult talk by 175

age: 0.125; age: 0.647; non-normative development: -0.22; 176

interaction non-normative by age: -0.217; all effect size betas 177

expressed as SDs). 178

To provide these results in more intuitive units, we fit the 179

same model centering variables without scaling. Children 180

†All ßs in Tables and text are based on treatment-coded models. See SI3H for sum-coded models,
which give the same pattern of results.

‡The normativity estimate is negative because normative development is the baseline.
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produced 66 more vocalizations per hour with each year of life.181

For every 100 adult vocalizations per hour, children produced182

27 more vocalizations; this effect grew by 16 vocalizations per183

year. Relative to infants with typical development, those with184

non-normative development produced 20 fewer vocalizations185

per hour; this difference grew by 8 vocalizations per year.186

Surprisingly, and in contrast to previous results using187

smaller and less diverse datasets and/or other language proxies,188

we found that child gender, SES (indexed here by maternal189

education), and monolingual status did not explain signifi-190

cant variation in child speech. As our raw data figures and191

model outcome results show, these null effects hold both when192

considering covariates (as in our model; Table 1) and when193

considering these variables individually (as in Figure 3; SI3F,194

3G, 3H). In our full model controlling for other variables (Ta-195

ble 1), the largest estimate for main effects or interactions196

involving child gender, SES, and monolingual status was about197

half of that for normativity, and one-sixth of that for age; none198

reached thresholds for statistical significance.199

While our models are well-powered to estimate associations200

of child speech with age, normativity, adult talk, gender, SES201

(as measured by maternal education), and monolingual status,202

this is predicated upon pooling the data and accounting statis-203

tically for corpus- and child-level variance via random effects,204

as described in Methods. This makes it beyond this paper’s205

scope to analyze language or population/cultural differences206

in detail, i.e. in a way that might allow the consideration207

of additional, culture-specific variables (hence their omission208

in Figs 2–3); see SI5 for citations to research on individual209

datasets, some of which tackle such differences directly.210

Noting that the results above have the strongest inferential211

value thanks to being pre-registered, we also addressed certain212

alternative hypotheses and interpretations that could have ren-213

dered our conclusions unjustified through a series of follow-up214

analyses. These checked for robustness of our key results with215

different operationalizations and statistical implementations of216

SES, when considering only children under or over 18 months,217

when considering causal paths, and when incorporating speech218

from other children as a predictor; our key results held in all219

cases (SI3H).220

We highlight here the results that may run most counter to221

many readers’ assumptions, namely, that in this large sample,222

SES (indexed by maternal education) does not come out as223

a significant predictor of child speech. This conclusion held224

when declaring SES as an ordinal and as a continuous variable225

based on levels or years of maternal education, when binarizing226

SES levels based on individual countries’ average education227

completion rate, and when declaring a random slope for SES228

within corpus (which allows SES effects to vary across corpora).229

Some readers may wonder whether there were some corpora230

for which SES did matter. If so, the analysis with random231

SES slopes by corpus would have indicated this, but it did not232

(SI3H). The relationship between SES and child speech was233

weak and inconsistent across corpora (as evident in Fig. 4).234

Perhaps most convincingly, results also held when constrain-235

ing our analysis to our largest homogeneous subset, the North236

American subsample (642 daylong recordings from 206 infants237

in 7 corpora; SI3G). We essentially replicated the full-sample238

results in this subsample: adult talk and age were significant239

predictors, whereas gender and SES (based on maternal edu-240

cation) were not. The significant adult talk × age interaction241

also replicated. The main effect of normativity did not, likely 242

because normativity’s interaction with age was larger than 243

in the full-sample analysis. Finally, we also tested whether 244

removing the adult talk variable would result in an SES effect, 245

i.e. testing whether adult talk was absorbing variance that 246

would otherwise be accounted for by SES. This was not the 247

case: Removing the adult talk predictor, SES still does not 248

account for significant variance in child speech in our analysis. 249

A central contribution of this work is thus the clear lack of 250

evidence we find for effects of SES (under several operational- 251

izations focused on maternal education), on how much speech 252

young children produce in day-to-day life. 253

Another potential concern is that our conclusions hinge 254

on the use of LENA™’s particular algorithm; they do not. 255

The findings above successfully replicate in the subset of data 256

for which data stewards were able to share raw audio (11/18 257

corpora), which was analyzed with a wholly different algorith- 258

mic approach, the Voice Type Classifier or VTC (Methods; 259

SI3F).§ Yet another worry is that our focus on adult talk may 260

mask other important contributions to children’s language 261

experiences, for instance, speech from other children. Testing 262

this in a supplemental analysis, we confirm that the level of 263

association found between adult talk and children’s speech 264

was unaffected by including other children’s talk measured by 265

LENA as a predictor variable (SI3H), confirming that our key 266

conclusions hold when factoring this other source of input in. 267

Finally, we also ran a model predicting adult talk (rather 268

than child speech). The amount of adult talk was not sig- 269

nificantly predicted by SES, child age, gender, monolingual 270

or normative status (Table 2, Figure 3E:H; SI3G:H). Impor- 271

tantly, these null results replicated in the North American 272

subset (SI3G) as well as in every other alternative analysis we 273

attempted (SI3H). Together, these analyses suggest that the 274

relationship we find between adult talk and child speech in the 275

child speech models is not attributable to child- or family-level 276

factors affecting adult talk. 277

Speech and Other Early Vocal Behavior. While our central 278

query concerned variability within early speech production, 279

we conducted a further descriptive analysis examining how 280

much of children’s vocalizations were speech or speech-like, as 281

opposed to the two other classes of LENA™-identified vocal- 282

izations: crying and vegetative sounds (e.g. burps, hiccups). 283

We examined these vocalization types as a function of age, 284

monolingual status, and normative status. As Figure 2C shows, 285

for children with normative development, the proportion of 286

vocalizations that were speech increased from just over half to 287

the vast majority over 2–48 months. In contrast, the crying 288

proportion fell steeply over the same period, from nearly half 289

of vocalizations to a small fraction of them; the proportion 290

of vegetative sounds was low and constant. Convergent with 291

our speech analyses, monolingual status did not alter these 292

patterns but normative status did: While the same overall 293

patterns held for children with non-normative development, 294

their decrease in crying and increase in speech production with 295

age was less steep (see Figure 2C). 296

As with more narrowly-defined non-normative populations 297

(e.g. children with Autism Spectrum Disorder (23)), we find 298

clear divergences in language trajectories in our normative 299

vs. non-normative samples. This is notable because (a) our 300

§VTC too has been robustly validated relative to various gold standard manual measures (SI1E)
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Fig. 2. Effects of adult talk, child age, and normative development on children's speech production. Points show each daylong recording; lines show linear regression
with 95% Confidence Intervals (CI). Child speech is quantified as child linguistic vocalization rate; adult talk as adult vocalization count rate (AVCr). A: Child speech by age, split
by low/mid/high tertiles of adult talk. Lines depict significant adult talk × age interaction. Color-shape combinations show each unique corpus, numbered to preserve anonymity.
B: Child speech by age and normative status. Lines depict significant age × normative status interaction. C: Proportion of vocal behavior classified as speech, cry, or vegetative,
by age. Line type/color indicate monolingual and normative statuses. N.B. Monolingual normative CI (blue) falls fully within that for multilingual children (pink) for all 3 types of
vocal behavior, highlighting these groups' equivalent patterns.

Table 2. Model results predicting adult talk (i.e. adult vocal-
ization count rate). q-values show FDR-corrected p-values.

β SE q

Intercept -0.100 0.160 .778
Child Gender(Male) 0.174 0.148 .547
SES(<H.S.(1)) 0.239 0.173 .547
SES(H.S.(2)) -0.015 0.194 .939
SES(B.A.(4)) 0.148 0.131 .547
SES(>B.A.(5) 0.098 0.150 .778
Control 0.084 0.055 .547
Norm 0.013 0.103 .939
Age -0.030 0.029 .547
Mono -0.028 0.112 .939
Gender(Male) × SES(<H.S.(1)) -0.375 0.196 .547
Gender(Male) × SES(H.S.(2)) -0.263 0.252 .547
Gender(Male) × SES(B.A.(4)) -0.220 0.176 .547
Gender(Male) × SES(>B.A.(5)) 0.016 0.201 .939
Norm × Age -0.076 0.060 .547
Mono × Age 0.035 0.068 .804

Note. None of the variables in our model predicted
adult talk. All abbreviations and baselines as in
Table 1.

non-normative sample is heterogeneous (SI2A) and (b) as 2–48- 301

month-olds, many children with non-normative classifications 302

here were at risk of (but not yet diagnosed with) language 303

delays or disorders. Automated speech analyses in naturalistic 304

recordings thus hold promise for future research into early 305

diagnostics (24, 25). 306

Adult Talk and Child Speech. Children who heard more adult 307

talk produced dramatically higher rates of speech, and this 308

effect increased with age. This result feeds into ongoing theo- 309

retical debates regarding the relevance of individual differences 310

(26). Although we cannot infer causality from our correlational 311

data, it is useful to consider possible causal paths that could 312

in principle have led to our results. A correlation between 313

child speech and adult talk is compatible with at least three 314

explanations: (1) Children who produce more speech elicit 315

more talk from adults; (2) Language-dense environments lead 316

children to produce more speech; or (3) A third variable causes 317

increases in both adult talk and child speech.¶ 318

Our model predicting adult talk (see Table 2) can be 319

brought to bear on Explanation 1. If children talking more 320

elicited more talk from adults, then we would have expected to 321

¶Our analyses suggest that one such potential third variable, differences in activities across recordings,
is not a likely candidate for the correlation between child speech and adult talk (SI4).
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Fig. 3. Factors that do not predict child speech or adult talk. Points = individual
recordings, jittered horizontally. Lines = linear fit with 95% Confidence Intervals. Error
bars = 99% bootstrapped CIs of sample means. Child speech is quantified as child
linguistic vocalization rate; adult talk as adult vocalization count rate (AVCr). A & B:
null effects of child gender (A) and socioeconomic status (SES) (B) on child speech.
C: null 3-way effect of normative development × adult talk × age (N.B.: normative ×
age and adult talk × age are significant; see Fig. 2). D: null 3-way effect of age × adult
talk × monolingual status. E and F: null effects of child gender (E) and SES (F) on
adult talk. G & H: null effect of normative development (G) and monolingual status (H)
on adult talk.

see that age and normative status were significant predictors322

of adult talk. Instead, we find that neither these (nor any323

other variables in our model) predicted the quantity of adult324

talk (Figure 3G). Nonetheless, the precise statistical analy-325

ses we carried out do not allow us to directly rule out any326

of the explanations, a combination of which may be jointly327

true. Establishing a precise causal chain will require careful328

consideration of a variety of proximal and ultimate pathways329

through which child and adult behaviors are shaped. As one330

example, given that most children here are genetically related331

to their adult caregivers, we may be observing covariance in332

amount of talk and its linguistic correlates (Explanation 3).333

Evaluating these alternatives requires evidence from children334

raised by unrelated caregivers or from genome-wide associ-335

ation studies, as genetic and environmental factors remain336

challenging to disentangle (27). In this vein, recent work337

with adopted 15–73-month-olds provides evidence for input338

effects (maternal utterance length and/or lexical diversity) on339

adopted children’s vocabulary size (measured via caretaker340

checklist) (28). This study suggests that shared genetics is not341

the sole contributor to links between (at least these proxies342

for) caretaker input and child language outcomes. Moreover,343

shared genetics is just one of the ways in which adult and child344

behavior may be independently shaped by an unmeasured345

confounded variable (as per Explanation 3). For instance,346

other third variables related to dimensions like personality,347

neighborhood, and childcare context too may be contributors348

(29, 30). These explanations can only be definitively teased349
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Fig. 4. Child speech as a function of SES within individual corpora. SES =
maternal education levels as in Table 1. White lines = linear fit with 95% CIs in color,
color = corpus. Black lines = 99% CIs of sample means bootstrapped separately from
linear fit for each level of SES. These data (as well as our main models and further
analyses in SI 3H/G) do not reveal an SES effect on child speech.

apart by future work. 350

New Insight on Child and Family Factors. Our main models, 351

figures showing the raw data, and additional analyses (in 352

the North American subset of the data, as well as using an 353

alternative algorithm, see SI3F) reveal effects of normativity, 354

age, and adult talk but not SES (measured here through 355

maternal education), child gender, or monolingualism. To 356

illustrate the complexities involved in determining causal links 357

between child and family factors and child language skills, we 358

again consider how causal links might manifest, using SES as 359

a central example. 360

Our findings bear on debates regarding SES-associated 361

academic achievement differences in Western industrialized 362

societies (31, 32). Slower language development has often 363

been attributed to parents from lower-SES backgrounds pro- 364

viding less input to their children (viewed from a middle-class 365

Western-centric perspective (32)), leading to calls for behav- 366

ioral interventions aiming to increase it. Proponents of such 367

interventions might highlight our correlation between adult 368

talk and child speech; critics might instead underscore our 369

finding that SES was not significant in our main analyses nor 370

in every other re-analysis we attempted (SI3E:G). 371

A full understanding of how SES may relate to children’s 372

language input is complicated for empirical and conceptual 373

reasons, leaving strong conclusions premature. On the empiri- 374

cal side, two recent meta-analyses have investigated SES–input 375

correlations, one focused on LENA™ measures (15), and the 376

other based on human-annotated measures (mostly from short 377

lab recordings) (16). The former finds evidence consistent 378

with a publication bias; correcting this bias statistically nearly 379

halves the association between SES and LENA™’s adult talk 380

measure (r= .19 versus .12). The latter finds a sizeable SES 381

6 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Bergelson et al.
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effect when inspecting infant-directed speech (r = .34) and a382

much smaller one when analyzing overall input quantities (r383

= .09). Together, these studies suggest that our best estimate384

of the association between overall input quantities and SES is385

small (r = .1) and may not be detectable even with a sample386

as large as ours (where the effect was estimated at |d| = .06,387

or |r| = .03, which did not reach the threshold for significance).388

Similarly, descriptive plots of the potential correlation between389

our SES proxy and children’s speech (Figure 4) did not suggest390

a strong or stable relationship across the 18 corpora, leading391

to our conclusion that, in the sample as a whole, on average,392

maternal education does not predict how much adults and393

children talk.394

On the conceptual side, SES differences in input and lan-395

guage skills may depend on how language is measured (33). For396

instance, we speculate that SES effects may be magnified by397

measures like prevalence of low-frequency words and complex398

sentence structures common in written text. Such words and399

structures may occur more in the input to Western, higher-SES400

children because of parenting practices stereotypical in these401

groups (34). Moreover, such measures may predict academic402

achievement better than others, because of the importance403

literacy has in Western schooling today. In contrast, SES404

differences in input may be minimized by holistic measures of405

speech quantities. Indeed, a strength of daylong recordings406

is that they provide a relatively neutral (rather than West-407

ern, high SES-centric) measure, as they tap into how much408

children are contributing (via speech) to their community’s409

conversational interactions instead of how many rare words or410

complex constructions they have been taught.411

An exclusive focus on word counts or speech quantities412

likely misses certain behaviors. As machine learning advances413

(35), it may soon be possible to automatically transcribe414

conversations happening in daylong recordings (at least in415

monolingual high-resource language contexts). We suspect416

that analysis of conversational content may reveal SES dif-417

ferences in, e.g., rare word use or family practices around418

book-reading even in naturalistic samples (36). Future work419

with a high-density longitudinal lens is also needed to assess420

the predictive value of global quantitative measures of speech421

(like those we employ) relative to more specialized measures422

(e.g. book-reading practices) with respect to culturally-relevant423

outcomes (e.g. academic achievement, pragmatic competence424

in multi-party conversation, etc.)425

In our view, causal links between parental behavior and chil-426

dren’s outcomes can best be illuminated by randomized control427

trials. Discovering and leveraging such links to change long-428

term language outcomes depends on community partnership-429

based approaches that are informed by the role that structural430

inequalities play in these outcomes and engage with culturally431

informed perspectives (37). The present results should not432

be used to deny families access to resources that evidence433

suggests are linked with better outcomes for children and their434

families.435

Complicated causal effects are integral to all developmental436

processes. While we illustrated this with our SES null results,437

we also found no differences in child speech or adult talk as438

a function of child gender or multilingual status. Regarding439

multilingualism, we could not examine relative input in each440

language the child was exposed to. Future machine learning441

advances will permit the separate quantification of different442

languages in daylong recordings, but this must happen along- 443

side reflection on how to fairly measure input and outcomes 444

in such heterogeneous populations (38–40). 445

Automated Tools and What They Count. A key benefit of our 446

approach is that we were able to pool and identically process 447

40,933 hours of independently-collected data (SI3A). Moreover, 448

unlike parental surveys, clinical assessments, lab instruments, 449

or hand-annotated data, current published evidence suggests 450

that the LENA™ algorithm’s results do not vary systematically 451

by language (though they do vary somewhat across samples, 452

12). More relevant here, in analyzing the algorithm’s accuracy 453

as a function of samples grouped by language and cultural 454

features, we found no significant differences (Methods, SI1E). 455

While children’s language skills grow dramatically over 2–48 456

months, our measure is not an index of comprehension (which 457

can show quite a different trajectory, 41) but rather of ob- 458

servable linguistic behavior, focusing exclusively on children’s 459

rate of linguistic vocalizations (SI3B). These results certainly 460

do not deny effects found on proxies of more narrow-scoped 461

linguistic developments (e.g. vocabulary, processing efficiency, 462

or syntactic complexity), given that some predictors that fail 463

to explain variance here may nonetheless be significant there 464

(3, 42). 465

The same holds for our measure of adult talk, which is 466

quantitative and holistic; additional research is needed to dis- 467

tinguish child-directed from child-available speech, with the 468

latter including all speech the child hears. Although some 469

research suggests child-directed speech shows tighter correla- 470

tions with children’s vocabulary than child-available speech 471

does (43, 44), the importance of the latter has not been as fully 472

studied for other types of language knowledge (45); and, as far 473

as we know, this paper is the first to document a significant 474

link for everyday child speech behavior. Therefore, it would 475

be relevant to further investigate the strength of the predictive 476

value of overall adult talk (which was a significant predictor 477

here) versus child-directed talk, in a similarly large and diverse 478

sample as the present one. Unfortunately, automated tools for 479

separating child-directed from overheard speech are not yet 480

sufficiently accurate to make this possible (46). Future work 481

could also develop promising new approaches for considering 482

other sources of speech (e.g., other children) given their rele- 483

vance as a function of family structure (47). These approaches 484

were not possible here due to both technical algorithmic con- 485

straints and family structure information not being available 486

in our data-subsets. Another fruitful future direction could 487

consider conversational dynamics, studying both children’s 488

tendency to vocalize around adults and the complexity of such 489

vocalizations. Recent work (that is critically reliant on human 490

annotation of social intent) raises particularly interesting ideas 491

in this domain (14, 48). Relatedly, novel exploratory analyses 492

describing the acoustics of children’s vocalizations (49) hold 493

promise for driving future hypothesis-testing work building on 494

the present results. 495

Whatever measures are employed in the future as proxies 496

of child language production and input, we strongly encourage 497

researchers to consider psychometric properties and ecological 498

validity. The current approach demonstrates measure validity 499

that is comparable to that of other standard infant instruments 500

(SI1D:E). As context, measures used as proxies for infant 501

language and cognitive knowledge are inherently noisier than 502

the best batteries used to assess highly educated adults in 503
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Western-centric settings. Notably, even there, reliabilities can504

fall well below r = 1.‖505

Moreover, standardized tests face ecological validity threats,506

particularly when applied cross-culturally. If our goal is to mea-507

sure and understand the human mind, we need implementable,508

culturally sensitive and appropriate ways of measuring human509

behavior on a large scale. To our knowledge, there are no510

such measures whose reliability has been examined, driving511

us to conduct extensive quantification of the reliability of the512

metrics we employed here (SI1D:E). We found that our mea-513

sures show levels of reliability that are consistent with those514

already in use for research and clinical purposes in infant pop-515

ulations. For example, the MacArthur-Bates Communicative516

Development Inventory (a parental report instrument used517

largely as a proxy for vocabulary size) has been the basis for518

cross-linguistic, demographic, and clinical research (9, 51–53),519

and reports a median correlation between itself and labora-520

tory measures of .61 (54). Our median accuracy comparing521

automated and manual annotation for each of our algorithms522

(LENA™ and VTC) is .74, squarely in line with field standards523

(SI1E). Indeed, converging evidence across these two wholly524

separate algorithms regarding overall accuracy of our measure525

serves to increase confidence in the validity of our results.526

In sum, rather than eliciting knowledge or caregiver-child527

interaction in a constrained lab setting, or using checklists528

in contexts where they make little sense socio-culturally, we529

measure everyday language use en masse. Our measure of530

early speech production is global, since we simply measure531

more versus less speech or speech-like production on the part532

of adults and children as they go about their daily life. And533

yet, these measures have important advantages, which led us534

to select them as proxies here, including comparable relia-535

bility to other measures of language development commonly536

used in both research and applied settings (Methods, SI1D:E);537

reported correlations between them and finer-grained, “quali-538

tative” measures of language development (SI1D), and conver-539

gent validity with respect to standardized language tests (13).540

Most importantly, our speech measure merits consideration as541

one of many possible proxies of language development thanks542

to its cross-cultural adaptability, observer-free sampling vol-543

ume, and sheer ecological validity. Indeed, our results raise544

the possibility that more ecologically-valid lexical, phonetic, or545

grammatical measures will also reveal stability across factors546

like SES (55), gender, and multilingualism. Exploring these547

factors, however, awaits machine-learning developments that548

can extract such fine-grained linguistic measures from the raw549

audio collected with child-worn devices.550

Conclusion. Our analysis of speech behavior in daily life551

around the world evinces scientific progress on two fronts.552

First, by revealing substantial variation in young children’s553

speech, we provide evidence against a monolithic picture of554

language development. Instead, this work reveals individ-555

ual variation as fundamental to our understanding of this556

species-wide ability. Second, by tapping into natural speech557

interactions at unprecedented scale and diversity, we are able558

to move beyond prior work by simultaneously considering the559

interlocking factors that affect speech production over early560

development. Our results reveal not only the expected cor-561

relations with age and clinical factors, but also substantial562

‖For instance, prior work finds test-retest reliabilities as low as r = .6 for certain sections of the widely
used Wechsler Adult Intelligence Scale among North American English-speaking adults (50).

associations with adult talk. All other factors paled in compar- 563

ison with these three, the null effect of our SES proxy being 564

of particular noteworthiness. These findings open exciting av- 565

enues for both theoretical research and potential applications, 566

including the prospect of behavioral interventions to harness 567

adult talk in the context of speech and language diagnoses. 568

Small-scale experimental and observational research has been 569

fundamental to our understanding of language, development, 570

and the human mind. Machine learning (like that in speech 571

technology) promises to extend our scientific reach by explod- 572

ing the range of everyday interactions we are able to capture 573

and analyze. Just as recent technological innovations have 574

opened new vistas in understanding the vocalizations of mice 575

and whales (6, 7), so too does speech technology have the 576

potential to reveal how everyday human communication gives 577

rise to language learning in children around the world. 578

Methods 579

All code used to generate our analysis and the 580

manuscript is available at https://osf.io/9v2m5/?view_only= 581

50df17fcf0844145ae692c35b78c6b08. 582

Data Discovery and Integration. We took steps to counter a preva- 583

lent bias for normative North American data (see SI3A for 584

corpus constitution procedure). Included data were indepen- 585

dently collected by 18 stewards (56–77); see SI5 for list of 586

publications based on individual datasets. We note that while 587

our corpora covered a much greater variety of participants 588

than prior work, it would not be appropriate to interpret our 589

samples as comprehensively representative of the country or 590

language community from which they are drawn. 591

Socioeconomic status and normative development were 592

streamlined for cross-corpus consistency (SI2A:B, SI3A, Fig- 593

ure S3A.1). For socioeconomic status we use maternal ed- 594

ucation, a reliable proxy for SES in previous research on 595

language development (18, 78). Maternal education was avail- 596

able across all datasets, and could be converted into a 5- 597

point maternal education scale with levels corresponding to 598

less than high school degree, high school degree or equiva- 599

lent, some college/vocational/associate degree level training, 600

university/college degree, and advanced degree (SI2B; Table 601

S2B.1). 602

For non-normative development, data stewards had tagged 603

a wide variety of infant or familial characteristics as poten- 604

tially non-normative. We confirmed that the classification 605

was backed up by extant literature (SI2A). Infants ultimately 606

classified as having non-normative development in the present 607

sample include those who met one or more of the following 608

criteria: preterm birth (<37 weeks); diagnosed speech or lan- 609

guage delay; global developmental delay; low birth weight 610

(<2500g when specified); hearing loss, hearing aids or cochlear 611

implants; familial risk of Autism Spectrum Disorder, specific 612

language impairment and/or dyslexia; other relevant genetic 613

syndromes. Notably, our child vocalization rate measure is 614

not a standardized normed clinical evaluation, and thus non- 615

normative status may not necessarily translate to behavior 616

that falls >1 standard deviations below the norm in these 617

naturalistic recordings. 618

Analysis Details. We first randomly partitioned the data within 619

each corpus such that 35% of monolingual, normative chil- 620

dren were placed in an exploration set (N children = 264; N 621
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recordings = 850), and all others in a confirmation set (N622

children = 737; N recordings = 2025) (SI3A). The exploration623

set was used to study the psychometric properties of potential624

language input and output variables (SI3B), resulting in the625

selection of the output variable referred to as child speech626

above, and CVCr (Child Vocalization Count rate) in anal-627

ysis and supplementary files (SI3B, Table S3B.1); and the628

input variable referred to as adult talk above, and AVCr629

(Adult Vocalization Count rate) in analysis and supplemen-630

tary files (SI3B, Table S3B.2). Note that this includes both631

child-directed and child-available speech.632

In addition, we used the exploration set to check the ro-633

bustness of results to variation in random effect structure, and634

explored diverse model structures using mixed models in R’s635

lme4 package (79), checking whether the addition of effects or636

interactions explained additional variance (SI3C). This led us637

to (a) include overlap rate as a covariate (see Figure S3C.1),638

to control for the fact that in noisy environments, more child639

speech and adult talk within the same recordings may be640

labeled as “overlap” by LENA (and thus not attributed to641

either speaker type) and (b) to not include random slopes642

for any of the predictors. Regarding the latter choice, our643

exploration of random effect structure revealed that models644

including random slopes for any of the predictors (notably645

including gender and SES) as a function of corpus led to646

non-convergent models. While such non-convergence could647

be due to various reasons, the most likely explanation is that648

the model is overparametrized (80), i.e., variance cannot be649

reliably attributed to predictors within each corpus (see SI3H650

for additional checks, including one including random slopes651

for SES, and SI2B for discussion of alternatives to our SES652

implementation).653

Evaluation against human annotations. To assess the validity of654

our child speech and adult talk measures, we evaluated them655

against human annotations (see SI1D:E for further informa-656

tion). The median correlation of human to algorithm perfor-657

mance for the algorithms is >.7, i.e. comparable reliability to658

established developmental clinical and research instruments659

(81–83). As far as we know, the present multi-cultural val-660

idation exceeds those from prior research instruments. For661

example, the Ages and Stages Questionnaire (84) is a standard662

instrument used at well-child visits in the U.S. It is also recom-663

mended by the World Bank as one of the most popular tools664

to measure child development, used in at least 20 countries665

(85). And yet, a recent systematic review (83) reports only 6666

reliability analyses (averaging, e.g., .7 for internal consistency667

at 24mo.). Relative to this, our validation effort containing es-668

timates for 14/18 corpora and finding strong validity is notable.669

Finally, one may wonder whether the LENA™ algorithm per-670

forms less well for languages and cultures that diverge from671

its training set, which was English-learning children growing672

up in an urban/suburban U.S. setting. Although we observe673

considerable corpus variation, this variation is not attributable674

to whether children were learning English or growing up in675

an urban setting, as assessed by Welch’s t-tests, for either676

our child speech measure (CVCr; English versus non-English677

medians 0.785 vs. 0.71, t(6.04) = -0.5, p = 0.637; urban versus678

rural medians 0.77 vs. 0.71, t(8.11) = -0.46, p = 0.661), or679

for our adult talk measure (AVCr; English versus non-English680

medians 0.75 vs. 0.74, t(7.91) = 0.42, p = 0.686; urban ver-681

sus rural medians 0.75 vs. 0.74, t(3.07) = -0.23, p = 0.835).682

Instead, our results suggest that corpus variation more likely 683

reflects how the human annotation was done rather than how 684

well the algorithm worked, since the corpora with lower reli- 685

abilities were also those in which the human annotation was 686

more coarse-grained (see SI1E). 687

Additional algorithm. To make sure that key conclusions were 688

robust to methodological details, we reanalyzed the subset of 689

the data for which data stewards shared audio with a newer, 690

open-source alternative to LENA™: the Voice Type Classifier 691

(VTC) (86). Like the LENA™ algorithm, VTC returns an 692

estimation of child and adult vocalization counts. A total 693

of 1065 audio files from 11 corpora were available for this 694

reanalysis (SI3F). 695

The VTC algorithm employs a completely different ap- 696

proach than the proprietary algorithm developed by LENA™, 697

including the use of neural networks running directly from the 698

audio (rather than from MFCC features). VTC allows multi- 699

ple talker classes to be activated at the same time, whereas 700

in the LENA™ algorithm, overlap between talkers (or be- 701

tween a talker and noise) is tagged as “Overlap,” which is 702

not counted towards children’s input or output. VTC also 703

differs from LENA™ in its training set. While LENA™ was 704

trained entirely on data from North American, monolingual 705

English-learning, urban children, VTC was developed using 706

the combination of various corpora of children residing in 707

urban or rural settings and learning one or more of several lan- 708

guages (including the tonal language Minn, French, Ju|’hoan, 709

Tsimane, English, and several others, in rough order of quan- 710

tity of data). Further information on accuracy is provided in 711

SI1E; both algorithms render similar accuracy when compared 712

to human annotation as noted above. 713

Models. We used linear mixed regressions (Gaussian family), 714

and established model structure from the exploration data 715

(SI3C). Hypotheses were derived from exploratory models and 716

systematic reviews of literature on monolingualism and nor- 717

mativity (SI3D). The model predicting the rate of children’s 718

linguistic vocalizations (i.e. child speech) was: child_gender + 719

SES +child_normative∗AV Cr∗age+child_monolingual∗ 720

AV Cr ∗ age + overlap + (1 + overlap + AV Cr|corpus) + 721

(1|corpus : child_id). The model predicting the rate of adult 722

linguistic vocalizations (i.e. adult talk) was: child_gender + 723

SES + child_normative ∗ age + child_monolingual ∗ age + 724

overlap + (1 + overlap|corpus) + (1|corpus : child_id). Full 725

model details and a link to model diagnostics are provided 726

in SI3E. We report estimates (standardized, which serve as 727

effect sizes), standard errors of the estimates, and q-values 728

(FDR-corrected p-values); see Tables 1 and 2. 729

Participants. Table 3 lists participant characteristics noting both 730

(1) the exploration/confirmation split (SI3A), and (2) that 731

some children provided multiple recordings. We excluded 732

2/850 recordings from 1/264 children from the exploration set 733

and 8/2025 recordings from 5/737 children in the confirmation 734

set from our models because data regarding their maternal 735

education was missing. For child gender, there were slightly 736

more boys than girls. This was in part because corpora with 737

children with non-normative development also include children 738

with normative development matched in gender, leading to an 739

over-representation of boys since more boys than girls have 740

non-normative development. See Table 3 and Figure 5 for 741

specific numbers and visualized distributions. 742
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Fig. 5. Sample demographics. Number of daylong recordings (top row) and children
(bottom row) in the full dataset across demographic variables. For socioeconomic
status (SES), <H.S. = less than high school degree, H.S. = high school degree, S.U. =
some university, B.A. = bachelor's degree, >B.A. = advanced degree. For child gender,
F = female, M = male. For monolingual status (monoling.), Y = monolingual, N = not
monolingual. For normative development (norm.), Y = normative, N = non-normative.

Language Background. The languages represented in these data743

covered many languages and language families. Using classifica-744

tions from Glottolog (87), we report that our 18 corpora feature745

10 primary languages (Dutch, English, Finnish, French, Span-746

ish, Swedish, Tsimane, Vietnamese, Wolof, Yélî Dnye) from747

5 distinct language families and one isolate (Atlantic-Congo,748

Austroasiatic, Indo-European, Mosetén-Chimané, Uralic, Yélî-749

isolate); see Figure 1. Based on corpus metadata provided by750

each data steward, the recorded children were also exposed to751

an additional 33 languages (Arabic, ASL, Berber, Cantonese,752

Croatian, Danish, Farsi, Frisian, German, Greek, Hindi, Hun-753

garian, Indonesian, Italian, Japanese, Khmer, Korean, Macedo-754

nian, Malay, Malayalam, Mandarin, Norwegian, Papiamento,755

Polish, Portuguese, Romanian, Russian, Sahaptin, Slovenian,756

Solomon-Islands Pidgin, Thai, Turkish, Yoruba), which add757

11 further language families (Afro-Asiatic, Austroasiatic, Aus-758

tronesian, Deaf Sign Languages—LSFic, Dravidian, Japonic,759

Koreanic, Sahaptian, Sino-Tibetan, Tai-Kadai, Turkic) and760

bolster data from three language families already represented761

by the primary languages (Atlantic-Congo, Indo-European,762

and Uralic).763
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