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Results
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- Steyvers and Tenenbaum (2005): compared incremental networks vs. all at once
networks (LSA, i.e. semantic vector space model)
- LSA Networks lacked common semantic net features
- taken as support for incremental growth /leading to common net features

Defining Semantic Similarity

* Incremental models assume semantic similarity is relative in time
- newly learned word has different semantic neighbors as a function of the state of the
lexicon during learning

1) Do common semantic networks properties necessarily stem from incremental growth?
- Common approaches:

 Thesaurus
« WordNet
« Adult free association norms

* No, using GLoVe vectors to build semantic networks using a static metric of semantic similarity (i.e. non-incremental nets), we find:
- scale-free, small-world, and highly clustered semantic networks

- Hills et al. (2009): counterproposal: preferential acquisition. - evidence against strong ‘incremental’ claim of preferential attachment

- semantic structure in environment guides acquisition, not structure in existing lexicon
- i.e. the ‘ground’ of semantic similarity is independent of the learner - Common approaches all lead to scale-free distributions, small-world structure, clustering 2) Does a word’s node degree correlate with age of acquisition in networks built using a static metric of semantic similarity (GloVe)

- All these methods use static metrics of semantic similarity
We use new generation all-at-once (i.e. non-incremental) networks (GLoVe), and a large

_ Vo _ _  Yes, depending on € (similarity theshold), medium correlations between node degree & AoA (Spearman’s p ~ 0.5, p < 0.05)
new corpus of nouns heard by infants (SEEDLingS) to test limits of previous claims.

* Node degree also correlates with frequency in corpus (see paper for details)
- frequency and node degree together accounts for significantly more variance than either alone in predicting word production

We use GloVe (Pennington, Socher, & Manning, 2014), a new semantic vector space model, as
our similarity metric.

- word vectors based on ratio of word co-occurrence probabilities for a given training corpus
- Results in a static geometric encoding of semantic similarity
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Sample Semantic Net for “baby”



