Comparing language input in the homes of blind and sighted children: Insights from daylong recordings

Erin Campbell, Lillianna Righter, Eugenia Lukin, Elika Bergelson

Why study language in blind children?

To what extent are vision-based skills necessary for acquiring language? •

(e.g., Brooks & Meltzoff, 2008; Carpenter et al., 1998; Lucca & Wilbourn, 2018)

How necessary is vision for acquiring language?

- Blind infants show vocabulary delays (Campbell, Casillas, & Bergelson, under review)
 - Roughly 7.5 month delay on average
 - Only ~20% of blind children score above the 50th percentile for vocab.
- But ultimately blind adults are fluent language users (Röder et al., 2003)
 - Showing that children can learn language without vision

So how do blind infants catch up?

Language input as a source of meaning

If parents modify the input:

Parents are sensitive to the perceptual abilities of the child Possibly compensatory

If parents *don't* modify the input:

Language input is sufficient for acquiring language in the

absence of vision

Previous studies of blind children's language input

Blind children get:

- Fewer descriptions, more directives (Kekelis & Andersen, 1984; Landau & Gleitman, 1985)
- Less interaction (Rowland, 1984; Moore, 1994; Preisler, 1991; Andersen et al., 1993; Grumi, 2021)
- Less decontextualized language (Andersen et al., 1993; Campbell, 2003; Kekelis & Andersen, 1984)
- • Present study: build on this literature with larger sample size
- and more naturalistic language sample
- • • •
- • • •

Methods

15 blind participants:

- English monolingual (>75% English input)
- No more than minimal light perception
- No hearing or cognitive/developmental diagnoses
- 6.4 30.3 mo. old; Mean = 15.7 mo.
- 7 male, 8 female
- 0-2 older siblings
- Mid-to-high SES, majority of moms completed some post-secondary ed.

15 sighted participants, matched on:

- Age (within one month)
- Gender
- Maternal Education ±1
- # of older siblings ±1

Daylong audio recordings with LENA

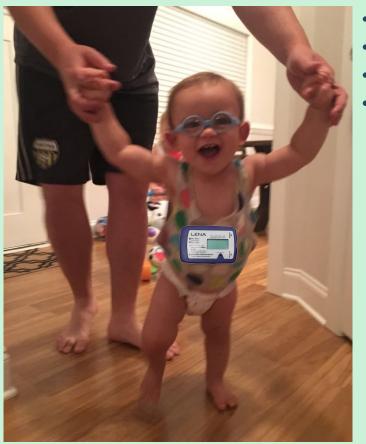


Image courtesy of parent

Methods

Daylong audio recordings with LENA

- 15 two-minute random samples
- 5 two-minute high-talk-density samples
- 40 min per kid = 1200 annotated minutes

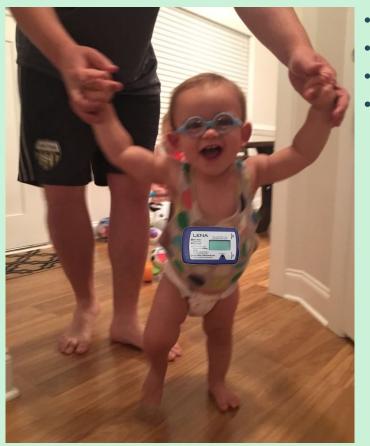
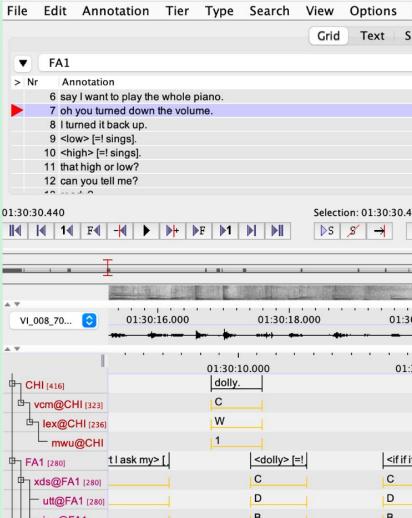


Image courtesy of parent

Methods


Daylong audio recordings with LENA

- 15 two-minute random samples
- 5 two-minute high-talk-density samples
- 40 min per kid = 1200 annotated minutes

ACLEW Annotation:

- Utterance
- Speaker
- Addressee

FA1 10904824 10905346 522 can you say-. 10906081 10907502 1421 can you say glug FA1 glug glug? xds@FA1 FA1 12914268 12916198 FA1 10909748 10911383 1635 can you 1930 C say glug glug glug? FA1 11842451 11844694 2243 are okay should we stop bang banging? FA1 I guess I should agree with you that from a communication standpoint there-. xds@FA1 FA1 12914268 12916198 1930 C FA1 11919756 11920884 1128 there- whoops. FA1 12352191 12355377 3186 ut s backing forth on my lap and so like-5804 12358100 2296 he um.FA1 12359472 12364 he sounds that are coming and w cause it's pretty repetitive 7824 12389603 1779 ama and we'll pop the weasel? M **18744** 1408 I wanna see I wanna s MA1 40319376 40320207 MA1 40320612 402 MA1 40335492 1A1 40352148 'hers>[=! [spnia 2 volume

FA1 FA1 12914268 12916198 1930 oh look at all these toys. xds@FA1 FA1 12914268 12916198 1930 C FA1 FA1 12918638 12919592 954 its a where sign. FA1 FA1 12920518 12921745 1227 <ooh> [=! Imitates]. xds@FA1 FA1 12920518 12934528 12921745 1227 C FA1 FA1 12932875 1653 its a little steep for a puzzle. FA1 FA1 12937682 12938402 720 enough in there. xds@FA1 12914268 12916198 1930 C FA1 FA1 FA1 12949405 12949715 uh-huh. xds@FA1 FA 2906902 897 C 129603 FA1 FA1 shake shake it down.xds@FA1 6902 897 C FA1 FA1 12 30 yay shake shake shake! 129660 xds@FA1 FA1 1653 C1633 uh-oh cd FA1 FA1 13019532 130203 FA1 FA1 13333078 133 uda>[=! Imitates]? xds@FA1 FA1 6902 897 CMA1 4146714 56 what song is this buddy? 0144 828 it'sa good jam.

xds

19592 954 C

Characterizing the input

1. Quantity

· · · · ·

How much speech?

2. Interaction

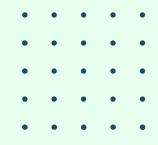
How interactive is the input?

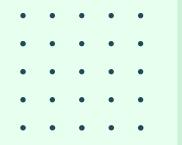
3. Linguistic Properties

How are words used and combined?

4. Conceptual Properties

Can the child perceive the referent?


Characterizing the input: quantity


Adult Word Count:

Automated LENA count of speech tagged as nearby adult

Manual Word Count:

Number of words in the manual transcriptions of the random samples

Quantity


Adult Word Count

Automated LENA count of speech tagged as nearby adult

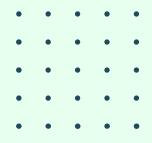
Number of words in the manual transcriptions of the random samples

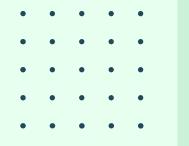
• • • • •

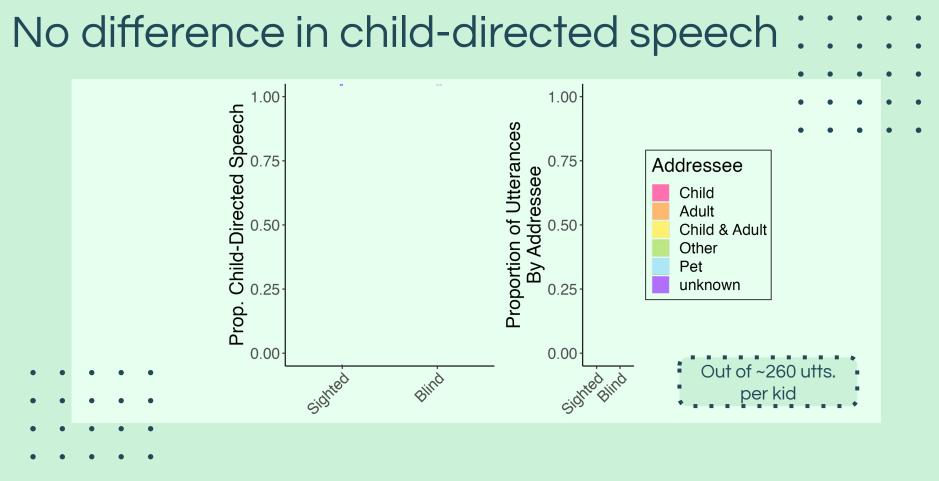
Interactiveness

Proportion of Child-Directed Speech

Proportion of utterances spoken **to** children (as opposed to adults, pets, etc.)

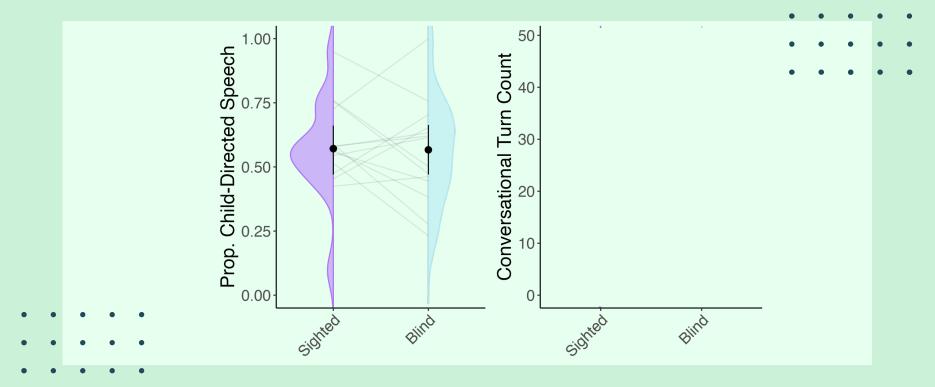



Number of switches between child/adult speakers within 5 sec. of each other


Characterizing the input: interaction

Conversational Turn Count: Number of switches between child/adult speakers within 5 sec. of each other

Proportion of Child-Directed Speech: Proportion of utterances spoken to children (as opposed to adults, pets, etc.)



• • • • •

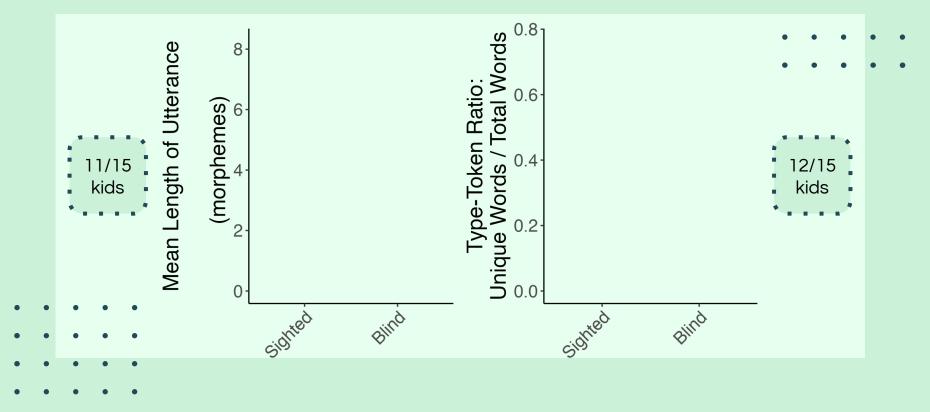
No difference in interactiveness :

- • • •
- • • •

Linguistic Properties

Number of unique words

Number of total words



Type-Token

Ratio

Average length of utterances, measured in morphemes

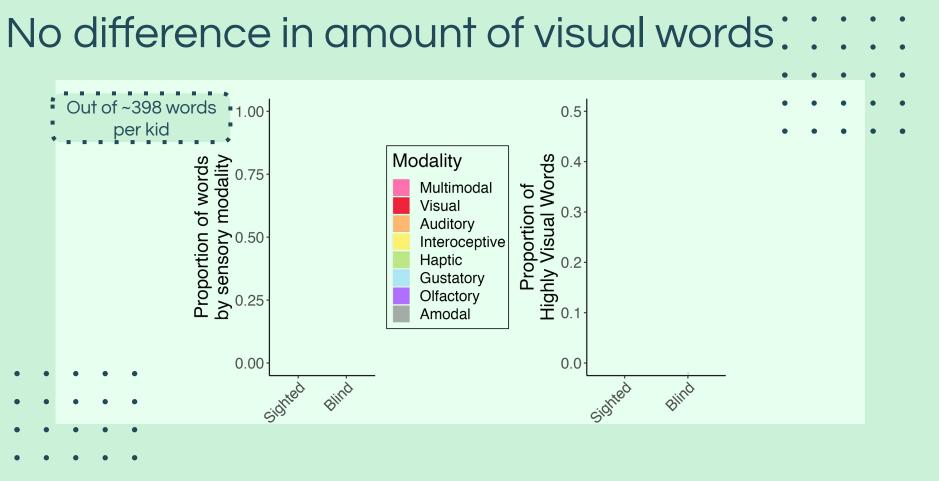
Longer, more lexically-diverse utterances

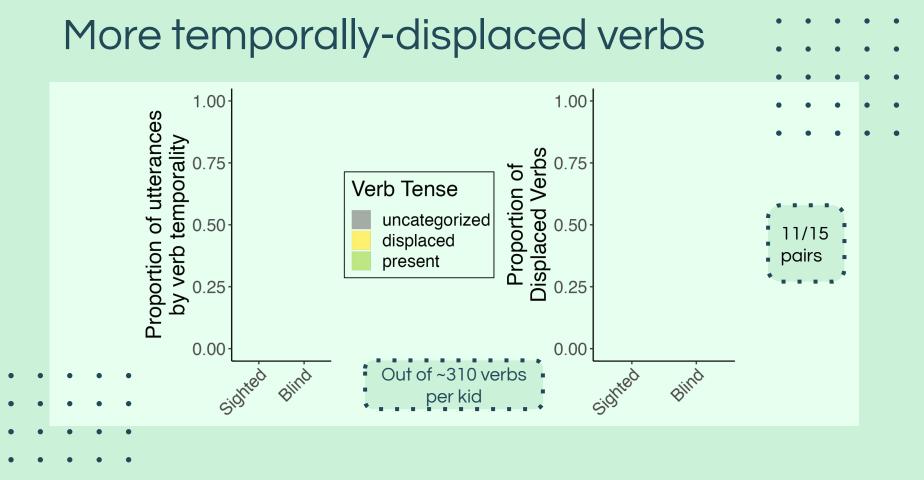


• • • • •

Conceptual Properties

Proportion of visual words


Lancaster Sensorimotor Norms (Lynott & Connell, 2020) *"How visual/auditory/tactile/etc. is the word* ____?" Assign perceptual modality to each content word in each child's input: Auditory, Visual, Gustatory, Tactile, Olfactory, Interoceptive, Multimodal, Amodal


Proportion of temporally "displaced" verbs Categorize verbs as present or displaced:

Present: current, ongoing events *I see a seagull!*

Displaced: past, future, or hypothetical *We <u>saw</u> a seagull at the beach last week.*

• • • • •

• • • • •

Characterizing the input

1. Quantity

2. Interaction

3. Linguistic Properties

4. Conceptual Properties

similar number of conversational turns and proportion of child-directed speech

higher lexical diversity and longer utterances

similar number of words in input

more temporally-displaced verbs, and similar # of highly visual words

Summary

• • • • • • • •

In many ways, similar input across groups:

- Similar quantity and parent-child interaction
- All differences small in magnitude

Also, evidence of differences:

Blind (vs. sighted) children hear:

- More complex speech (higher MLU and type-token ratio)
- More decontextualized language

Blind children do not receive "deficient" language input

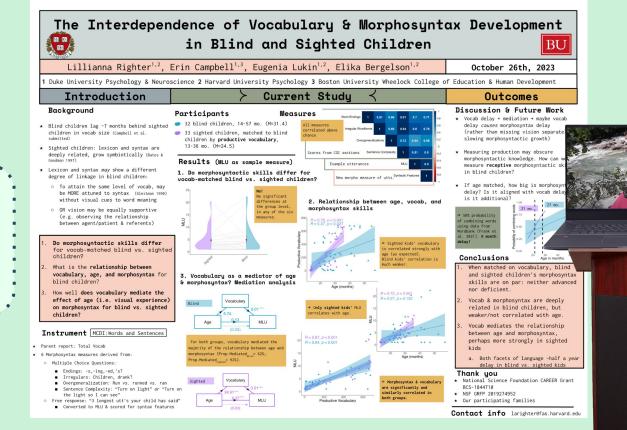
Discussion

What does it mean for blind children's language outcomes?

- In sighted children:
 - \circ Longer utterances \rightarrow larger vocab. (Anderson et al., 2021)
 - More lexical diversity \rightarrow larger vocab. (Anderson et al., 2021)
 - \circ More decontextualized speech \rightarrow larger vocab. (Rowe, 2013)
- Properties of language input may support word learning in the absence of visual input
 - Perhaps blind children use strategies like syntactic bootstrapping to build vocab.

Future Directions

Connecting to language outcomes:


- What could additional complexity mean for language development?
 - Does this help blind children learn language without visual input?

Honing in on the "visual" words:

- Do blind individuals rate these words similarly?
- Are these used in similar ways, in similar contexts?

Poster session Thursday 17:10

.

Learn more!

NSF Career Award (BCS-1844710) NSF GRFP (2019274952)

• • • • •

Thank you